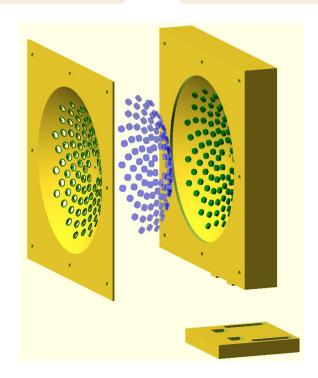
# **3D Imaging Dome In-air Demonstrator**

3D Print Options from Stratasys

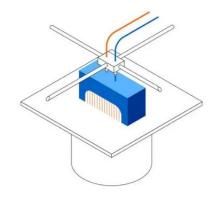
Sanha Cheong


SLAC MAGIS Group Meeting Aug. 26<sup>th</sup>, 2021





### **3D Print Quote from Stratasys**


- Aug. 20<sup>th</sup>: first submission of preliminary CAD designs
- Aug. 25<sup>th</sup>: initial quote received from Stratsys
  - Two options recommended
  - Fused Deposition Modeling (FDM)
    - ASA Black: UV-stable, standard thermoplastic
  - Laser Sintering (LS)
    - Nylon 12 CF: Carbon-fiber-filled Nylon 12
- Aug. 26th: some additional questions / requests
  - Asked few questions and additional quote
  - Price independent of build orientation
  - Stereolithography (SLA)
    - Somos Watershed XC 11122



## **3D Print: Fused Deposition Modeling (FDM)**

- Deposits molten thermoplastic filament
  - Most basic, standard 3D printing technology
- Recommended material: ASA Black
  - UV-stable, standard thermoplastic
- Resolution of 0.007" (178μm)
- "FDM is great at maintaining a cheaper value with denser parts"

|     | Base | Front<br>Board | LS Board | Object<br>Rod | Total |
|-----|------|----------------|----------|---------------|-------|
| FDM | \$87 | \$171          | \$540    | \$48          | \$846 |

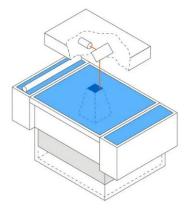




#### **FDM** Fused Deposition Modeling

- · Melts and extrudes thermoplastic filament
- · Lowest price of entry and materials
- Lowest resolution and accuracy

#### BEST FOR:


Basic proof-of-concept models and simple prototyping

### Sanha Cheong

## **3D Print: Laser Sintering (LS)**

- Fuses polymer powder with laser
  - Tends to be low cost with decent resolution
- Recommended material: Nylon 12 CF
  - High stiffness, high tensile strength
  - Optimal reproduction of details
- Resolution of 0.004 0.006" (102 152μm)
- "SLS is better with parts that are more organic and cannot be manufactured otherwise"

|    | Base | Front<br>Board | LS Board | Object<br>Rod | Total |
|----|------|----------------|----------|---------------|-------|
| LS | \$69 | \$252          | \$331    | \$45          | \$697 |





- Laser fuses polymer powder
- Low cost per part, high productivity, and no support structures
- Excellent mechanical properties resembling injection-molded parts

#### BEST FOR:

Functional prototyping and end-use production

### Sanha Cheong

# **3D Print: Stereolithography (SLA)**

- Laser cures photopolymer resin
  - Usually known as highest resolution/accuracy
- Recommended material: Somos Watershed XC 11122
  - Known for moisture resistance
  - Usually popular for parts where fluid flow is important
- Resolution: ??? (haven't heard back yet)

|    |                | ~ | Commune |
|----|----------------|---|---------|
|    | K              | 2 |         |
| // | $\overline{)}$ |   |         |
|    |                |   |         |
|    | Vier           |   |         |
|    |                |   |         |



#### SLA Stereolithography

- Laser cures photopolymer resin
- Highly versatile material selection
- Highest resolution and accuracy, fine details

#### BEST FOR:

Functional prototyping, patterns, molds and tooling

|     | Base  | Front<br>Board | LS Board | Object<br>Rod | Total |
|-----|-------|----------------|----------|---------------|-------|
| SLA | \$115 | \$126          | \$599    | \$82          | \$922 |

### **Stratasys Quote Summary**

- Quotes for three different 3D printing technologies
  - Fused Deposition Modeling (FDM)
  - Laser Sintering (LS)
  - Stereolithography (SLA)
- LS or SLA seem to be the best, but we should get a resolution quote for the SLA option
- Should we print our in-air demonstrator with Stratasys?
- Should we prototype with smaller piece?
- How does these prices compare with ART (SLA)?

|     | Base  | Front Board | LS Board | Object Rod | Total |
|-----|-------|-------------|----------|------------|-------|
| FDM | \$87  | \$171       | \$540    | \$48       | \$846 |
| LS  | \$69  | \$252       | \$331    | \$45       | \$697 |
| SLA | \$115 | \$126       | \$599    | \$82       | \$922 |