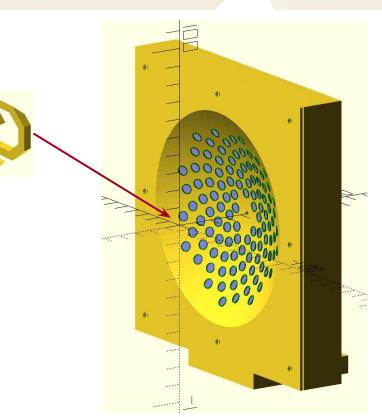
3D Imaging Dome In-air Demonstrator

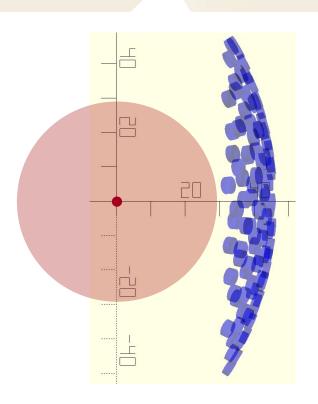
3D Print Design

Sanha Cheong

SLAC MAGIS Group Meeting Aug. 19th, 2021



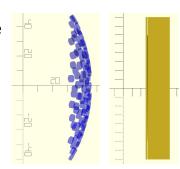
In-air Demonstrator: Definition

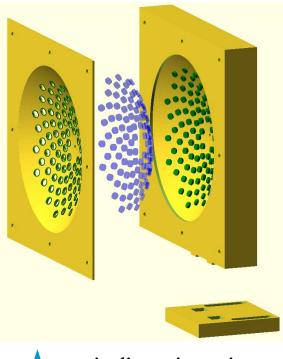

- Proof-of-Concept Demonstrator
 - o 3D view & reconstruction
 - Light collection
- Will be tested with O(1mm) 3D targets
 - "DOE" letter cube
 - SLAC Logo
- Intermediate step for similar experiments at Jason's lab and eventually MAGIS-100
 - o In-air is the easier version
 - But we shouldn't make it too easy
 - Try to keep things somewhat realistic
- Main piece for the first PoC, engineering paper

In-air Demonstrator: Overview

SLAC

- Based on MDProto2
- Overall board dimension:
- 111 mirrors total
 - Fixed diameter: 5mm
 - Same $\lambda/4$ mirror used during prototyping
 - Transverse span: ~50mm in radius
 - Maximum view angle: 55deg
- Minimum distance from the object
 - Not technically necessary for in-air
 - Required for real atom interferometers (clearance for vertical lasers)
 - Mirrors lying between 30mm and 47mm in x-direction

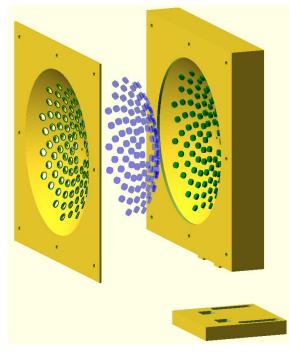

3D Print Design: Overview

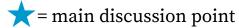

SLAC

- Front & Local Support boards
 - Transverse radius of the dome: 60mm
 - Overall dimensions: 140mm × 140mm × 25mm
 - *

#8 screws: 0.1640", 4.1656mm

- Good enough? Something bigger?
- Base board
 - Same as MDProto2
- Clearance from the object location
 - o 30mm for the mirrors
 - ~25mm for the front-most board surface



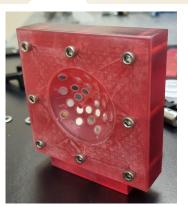

= main discussion point

3D Print Design: Printing Material

SLAC

- Latest results from MDProto2
 - Knobs are not always pushing in very well
 - ★ Knobs not long enough
 - Longer knobs
 - Rubber (or other) pads in between
 - Front board flexing (∵ screws only at edges)
 - Add central screw(s)
 - Simple printing error
- Mirror hole
 - o 5.2mm felt a little loose
 - o 5.1mm? Haven't tried yet...
- Front-stop
 - o {0.2, 0.3} mm

3D Print Design: Printing Company & Material

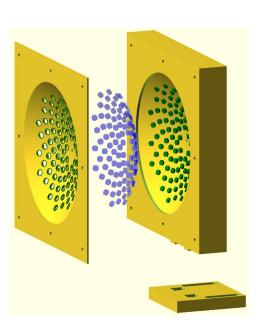

SLAC

Applied Rapid Technologies, ART

- MDProto1 material = SOMOS® ProtoTherm 12120
 - Red, slightly transparent
 - Initially recommended for high-precision parts
- MDProto2 material = SOMOS® Taurus
 - Black, more matte
 - Happened to be available for MDProto2
 - Felt a little less accurate than MDProto1
 - Possibly due to expansion?

Stratasys Direct Manufacturing

- New company suggested by Greg
- Wider range of technologies: SLA, PolyJet, Laser Sintering, etc.
- Even additive metal technologies
 - Direct Metal Laser Sintering



Sanha Cheong 6

Summary

- In-air demonstrator design is basically read for order
 - Minor remaining issues
 - Back knob length, screw sizes, mirror hole diameter
- But how should we actually make it?
 - ART
 - Mostly quite fast, reasonably cheap
 - Familiar with its quality and errors
 - Had some occasional problems
 - Stratasys
 - More options
 - Seems more advanced
 - Possibly (probably) more expensive?
 - Suggestion: I'll email Stratasys today, get some recommendations / quotes

