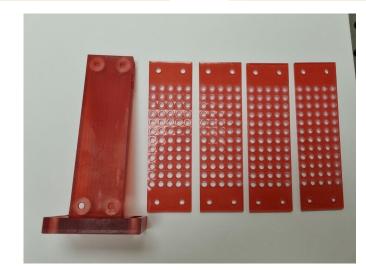
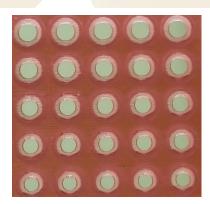
Updates from the Lab: Some Testing with MHTestB

Some Preliminary Observations & Measurements

Sanha Cheong


SLAC MAGIS Group Meeting Jun. 24th, 2021

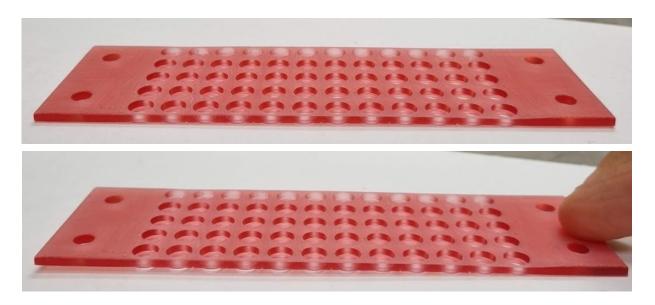
More Deliveries at the Lab


- MHTestB
 - 1 "local support" board
 - 1cm thick
 - 4 "front" boards
 - Thickness: {1.8, 1.9, 2.0, 2.1} mm
 - Boards screwed together by #8-32 screws
- Rubber sheets
 - Padding between the two boards
 - Thickness: {1/64", 1/32", 1/16"}
 corresponding to {0.4mm, 0.8mm, 1.6mm}

SL/

MHTestB: Printing Direction

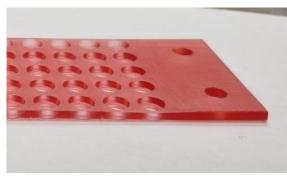
- Local supports are printed vertically
- Front boards are printed horizontally
 - Huge difference in overall smoothness & hole inner diameter
 - 5.3mm and 5.4mm both feel very loose
- This was done at the company's discretion; perhaps worth specifying printing direction next time
- What do we expect from the final "dome" shape? How would the diagonally printed holes look like?



SLAC

MHTestB: Flex in Front Boards

- Front boards are convex to the front side
 - Similar behavior all across the 4 boards
- Makes it difficult for the mirrors in the central region to be pushed properly

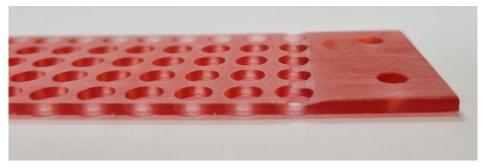


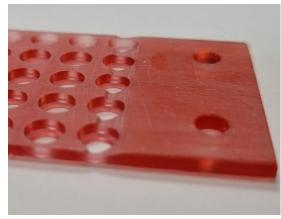
SLAO

MHTestB: Non-uniformity in Front Boards

- Front boards have non-uniform thicknesses
 - Was designed to be uniform at {1.8, 1.9, 2.0, 2.1} mm
 - 0.3mm 0.4mm thicker in the bottom & top regions (visible amount!)
- Digital caliper measurements

Board Type	Thickness [mm] @ bottom region	Thickness [mm] @ center region	Thickness [mm] @ top region
1.8mm	2.24	1.86	2.13
1.9mm	2.33	1.91	2.31
2.0mm	2.44	2.03	2.40
2.1mm	2.37	2.06	2.44

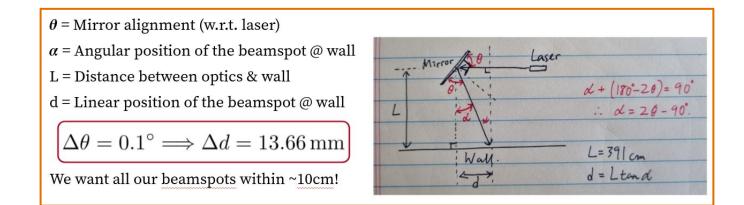




SLAC

MHTestB: Damage on 1.9mm Board

- The very bottom row of 1.9mm front board has significant damage
- What caused it?
 - Printing process...?
 - Unlikely, considering the printing direction
 - Handling process @ company
 - Delivery



SLAO

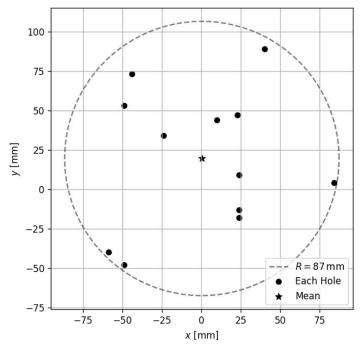
Summary on 3D Print

- Horizontally printing the holes seems like a good idea
 - Smoother surface
 - More precise control of actual inner hole diameter
 - But how would the "diagonal" holes in our dome look like?
- Overall, worse-than-ideal print quality this round
 - Flex & thickness variation really hurt our tests
 - Where do these come from?
 - Printing/curing process? Specific to certain material?
 - Does this only happen to thin boards? Or regions with much empty area like our grid of holes?
 - Resolve these issues before setting precise design parameters
- Any other options...? Less-than-\$1M machining for our prototypes?

Some Tests, Nonetheless

Main results from some preliminary tests

- Verification of design (push-in mechanism)
 - Effect of rubber padding
- Effect of front-stop overlap radius


Measurement 1: First Verification of the Design

- 1.8mm front board, "control" column
 - 12 identical holes
 - 5.4mm diameter, 0.8mm overlap radius
 - Repeated across different front boards
- Full result with 1/64" rubber sheet
 - All beamspots within 87mm radius from mean, corresponding to ±0.64deg
 - No obvious trend within the column
- Quick test (no data recorded)

Sanha Cheong

- A similar (perhaps slightly worse) result was observed with the same 1.8mm board without rubber sheet
- No visible damage to mirrors

MHTestB 1.8mm Board with 1/64" Rubber Sheet Control column (5.4mm, 0.8mm)

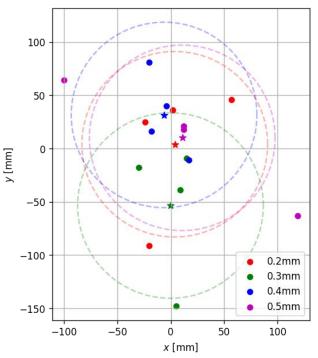
Issues with the Front Board Thicknesses...

Then, we wanted to try the 2.1mm board

- Noticed **significantly larger span** with and without rubber
 - ~120mm radius, ~0.88deg
- Then, upon closer visual inspection, it was noticed that the mirrors were not properly pushed in by the local support
 - Bottom/top are significantly thicker than the mirrors
 - The front board is bent
 - Too much pressure from the screws can further bend the board

Wait... Re-visiting the 1.8mm Board

- 1.8mm board edges also slightly thicker (2.24mm, 2.13mm)
- Along with bending effect, our mirrors could again be floating
- Was this happening in the no-mirror run?

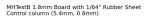


- Yes, indeed!
 - But there is very little room, maybe 0.1mm
 - That corresponds to ~1.15deg
 - Not terrible, but not good enough \Rightarrow 2.13mm, 2.24mm edges are no good

Measurement 2: Scanning Front-stop Overlap

- 1.8mm front board + 1/32" rubber sheet
 - 5.4mm diameter holes
 - Front-stop overlap: {0.2, 0.3, 0.4, 0.5} mm
 - 4 holes per parameter
- Overall, quite a bit worse than 87mm
 - More like 130mm, 0.95deg
 - Possibly due to bending of front board
 - Need to fine-tune screw strength
- No noticeable trend
 - Larger overlaps no more stable than smaller ones
 - This is worth decreasing, if possible

MHTestB 1.8mm Board with 1/32" Rubber Sheet 5.4mm holes with different overlaps


Sanha Cheong

Lessons from Tests

- Caveats
 - Our boards are not what we wanted/expected
 - In particular, the bend & the thickness variance
- First successful demonstration of push-in mounting
 - Within ±0.64deg span
 - Sensitivity to screw strength makes this hard to reproduce consistently
- It seems like the front-stop **overlap doesn't have to be very thick**
 - We should test lower values again next time (0.2mm to 0.5mm)
- Hard to test further before we get **more precise prints**

Discussions points

- What is causing such big problems in the 3D prints?
 - One time bad luck? Material? Thin, perforated design?
- Shall we contact the company? Re-print? Re-print with other companies?
- Do we have other options? Medium- or low-quality machining?

Board Type	Thickness [mm] @ bottom region	Thickness [mm] @ center region	Thickness [mm] @ top region
1.8mm	2.24	1.86	2.13
1.9mm	2.33	1.91	2.31
2.0mm	2.44	2.03	2.40
2.1mm	2.37	2.06	2.44