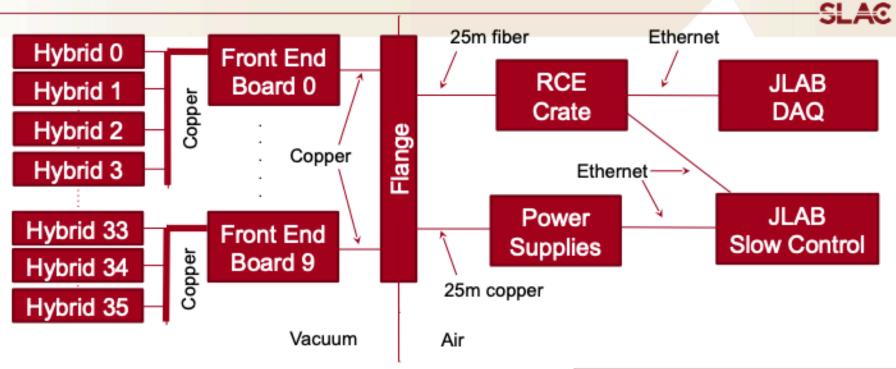
SVT DAQ Setup @ SLAC

06/20/2021


Outline

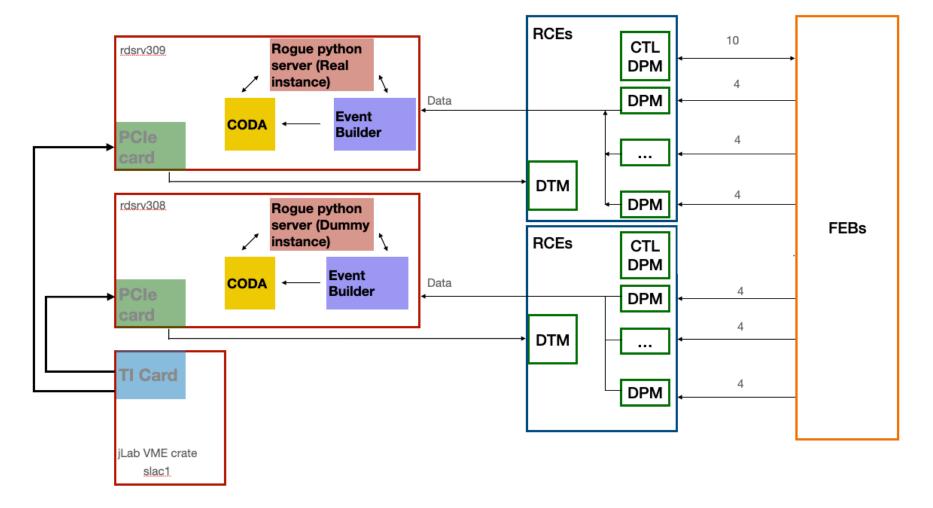
Introduction

- SVT DAQ Overview
- Some inspiration taken from <u>Cam's Collab 2019 Talk</u>
- DAQ Setup at SLAC
 - Architecture schematics
 - Hardware components
 - Back-end setup: current status
- Local Data taking
 - Feb testing
- Integration in jLab system
 - Integration with CODA and Epics
 - Slow Control integration / Monitoring integration
- Next steps and plans

SLAO

SVT DAQ Overview

- 36 hybrids
 - 12 in layers 0 3 (2 per module)
 - 24 in layers 4 6 (4 per module)
- 10 front end boards
 - 4 servicing layers 0 3 with 4 hybrids per board
 - 6 servicing layers 4 6 with 4 hybrids per board
- RCE crate: ATCA, data reduction, event building and JLab DAQ interface

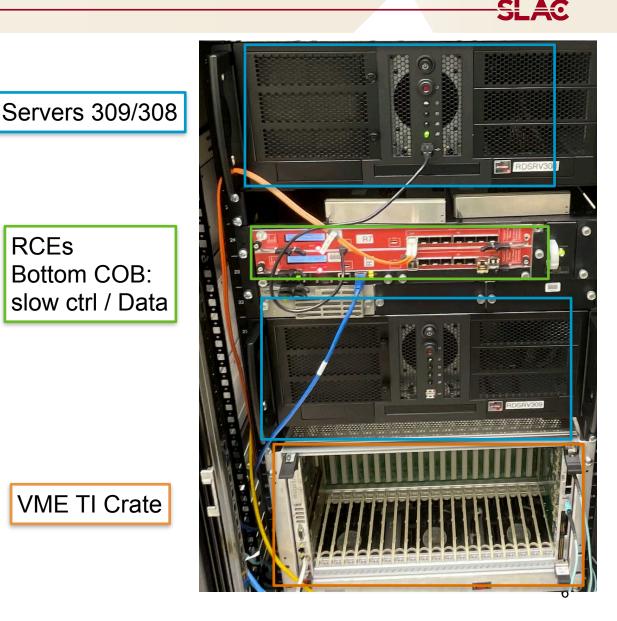

Naw Abo data late (Obps)					
Per hybrid	3.33				
Per L1-3 Front end board	10				
Per L4-6 Front end board	13				

Raw ADC data rate (Ghns)

SVT RCE Allocation - 2019 schematics

- Two COBs utilised in the SVT readout system
 - Total 16 RCEs (Data and Control DPMs, 8 DPM per COB)
 - 2 DTM (1 DTM per COB)
- 7 RCEs on each COB process data from half SVT
- 8th RCE on COB 0 manages all 10 FEBs Board
 - Configuration / Slow controls / Status monitoring
 - Clock and trigger distribution to FE boards / Hybrids
- 8th RCE on COB 1 is not used

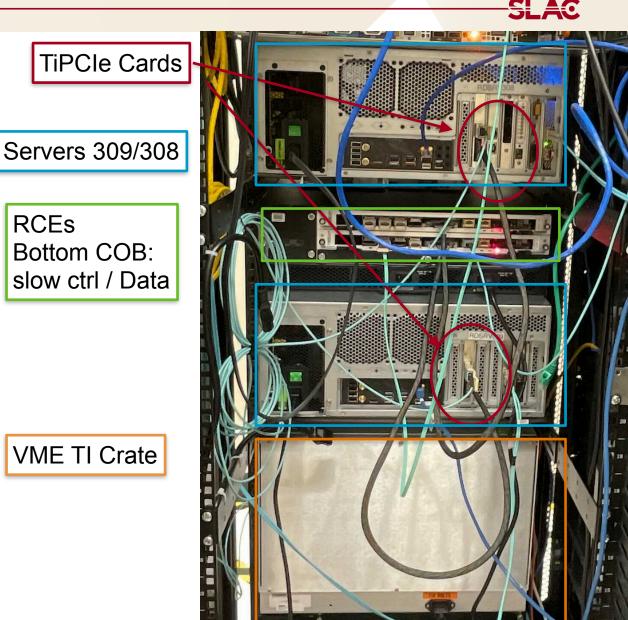
DAQ Infrastructure architecture

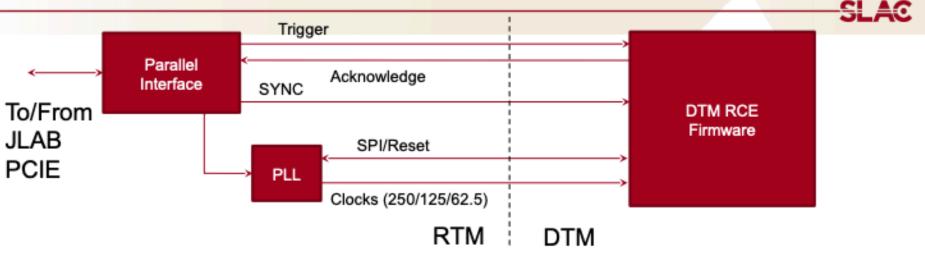

Schematics of the SVT DAQ Architecture

Hardware components - ATCA crate - Front

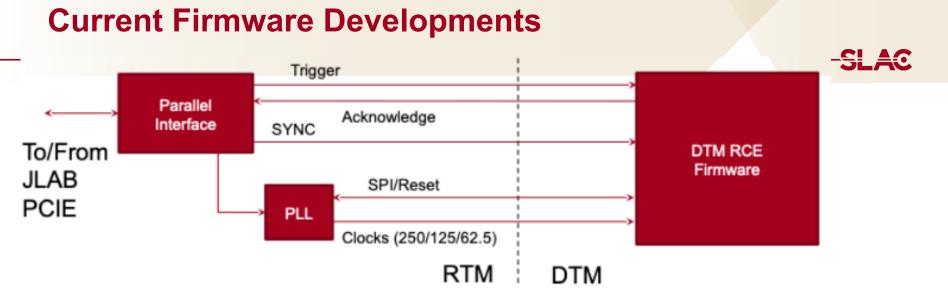
- 2 server machines rdsrv309/308 connected
- Internal dag network between server machines, VME TI Crate and RCEs working and fully functional
 - Network sharing in the backplane to be cut
- The 2TiPCle cards have been installed
 - Fiber connection from **TI** crate
 - Ribbon cable connection to RCEs
- Slow controls to the test stand in SLAC

RCEs Bottom COB: slow ctrl / Data

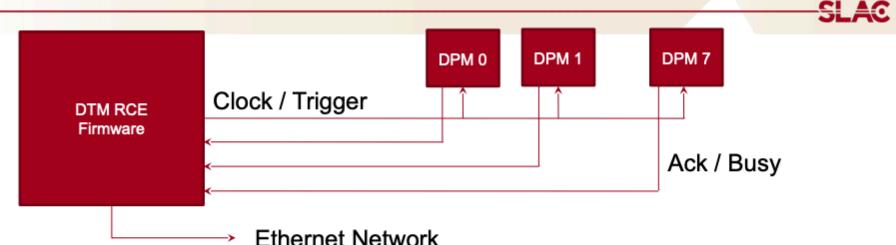

VME TI Crate


Hardware components - ATCA crate - Back

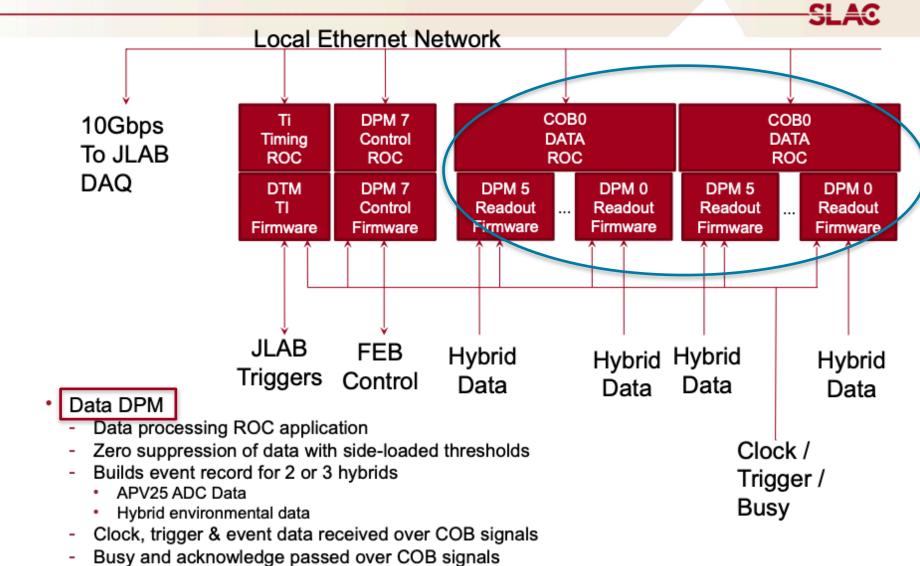
RCEs


- 2 server machines rdsrv309/308 connected
- Internal dag network between server machines. VME TI Crate and RCEs working and fully functional
 - Network sharing in the backplane to be cut
- The 2TiPCle cards have been installed
 - Fiber connection from TI crate
 - Ribbon cable connection to RCEs
- Slow controls to the test stand in SLAC

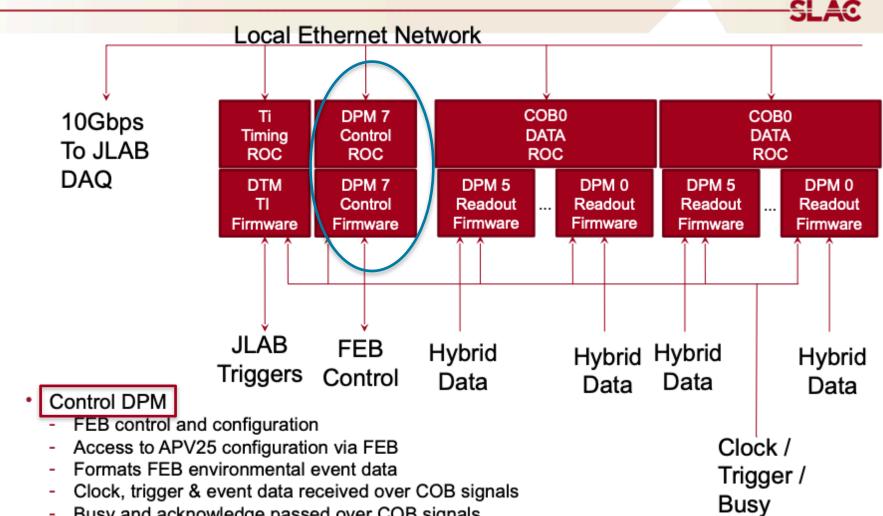
SVT Trigger Interface



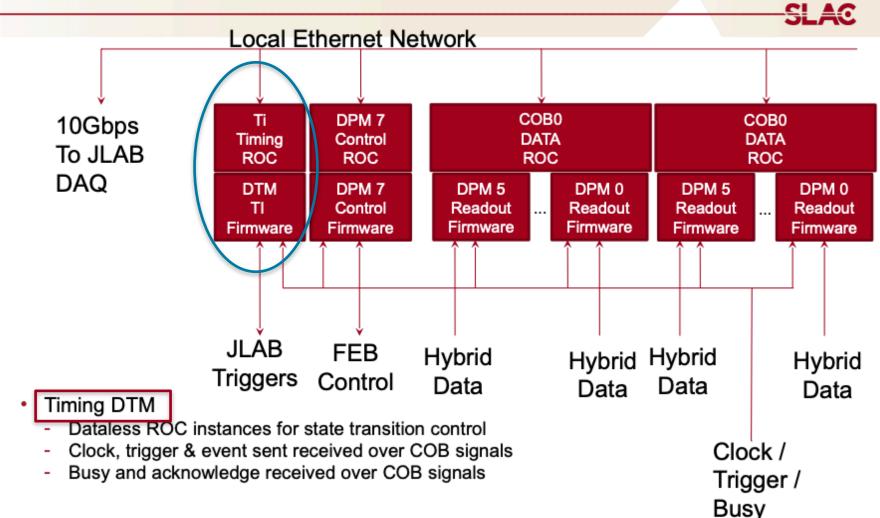
- Parallel interface and PLL exist on new RTM
- Fully allocated available signals between RTM and DTM
 - 1 high speed pair for trigger & SYNC
 - 1 low speed pair for SYNC
 - 2 low speed pairs for PLL SPI and Reset signals
 - 3 low speed pairs for PLL generated clocks (250/125/62.5 Mhz)


- Observed in the past that sync signal being sent to the DTMs from TIPCIe was out of phase
- This leads to an out of phase sync signal being distributed to the other RCE components
- The full test stand setup at SLAC will be used to develop a FW to cancel out the phase difference in the sync signals

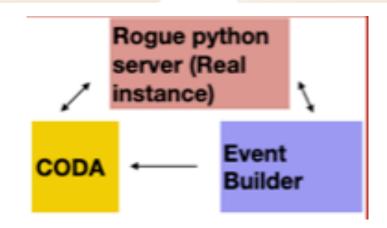
SVT Trigger Distribution



- DTM FPGA has ability to distribute clock and trigger to DPMs
 - Clock and trigger wired as fan out to DPMs
 - Individual feedback signals from each DPM
- 1 pair for clock fan out
- 1 pair for trigger fan out
 - 125Mhz serial protocol transfers 8-bit codes (easily expanded to longer words)
 - Used to distribute event codes to DPMs
 - System clock sync, APV25 sync & JLAB triggers
- 1 pair for trigger data distribution
 - Event and block data
- 1 pair per DPM for feedback
 - Readout and trigger acknowledge
 - Busy


ROC Instances On SVT

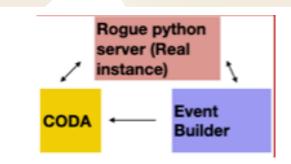
ROC Instances On SVT

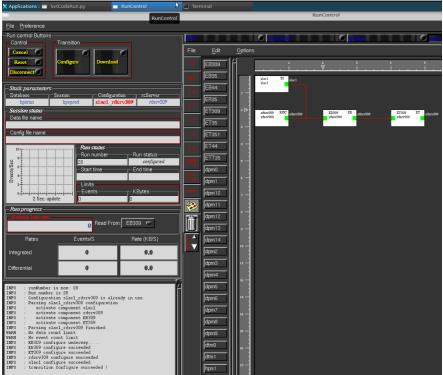


ROC Instances On SVT

Back End - Software applications

- Rogue:
 - General DAQ interface for Configuration / Register monitoring of the whole COB+FEB system
 - Local data taking for quick diagnostics
 - Inter-process communications: CODA, Epics..
 - Updated to newest release from TID-AIR-ES (SLAC)
 - <u>v5.8.0</u> (stable)
 - Minor changes for HPS Run 2021 interface




Back End Setup - Integration status

 All current hps daq sw collected here:

heavy-photon-daq GIT

- Repository updated and compatible with newest version of Rogue v5.8.0
- Event-Builder compiled successfully against Rogue-Lite (i.e. rogue without python bindings) v5.8.0 (only minor modifications needed so far)
- Sergey successfully compiled and installed CODA in the server machines here at SLAC

Back End Setup - Integration status - CODA

 Integration in CODA almost completed

- Basic configurations have been deployed for baseline data taking
- Currently working to complete the transition to GO state (Prestart Working OK)
- Currently:
 - No SaveState in GO / EndOfRun
 - No loading of thresholds in Prestart Phase (DAQ Map need to be fixed for SLAC test-stand)
 - Check of the
 - Configuration is disabled due to issues in read-back of the FEB registers
- Some modifications to the rogue python part needed 16

Back End Setup - Integration status - EPICS

- Integration with EPICS
 - Only Basic checks performed
 - Verified communication between Rogue and EPICS:
 - I could obtain via "caget" variables pushed by Rogue with EPICS
 - Will prepare a full configuration for a IOC Machine to test that all is functioning as expected before the run

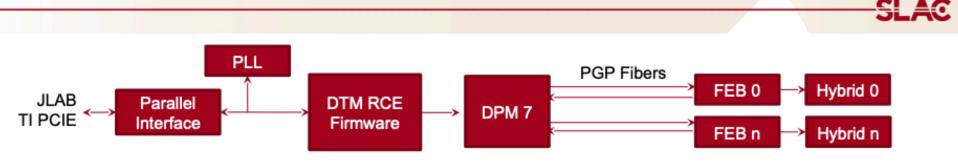
SL AC

Current Issues - TO DO

- Some checks need to be performed on the clock from the TIPCle card:
 - We are able to read the external clock frequency on the DTMs
 - We are able to configure and (partially) talk to the FEBs after configuring with external clock - we see the upTime OK
 -> pgp connection seems established
 - We receive corrupted data when performing read-back at pre-start stage:
 - Need to discuss with Ben/Ryan the source of the issue

		BusyRateMax	RO	UInt32	329	per second
3		псікоггедкам	RO	UIIIL32	0x7736037	
		TiClk0Freq	RO	Linked	125.002	MHz
		TiClk1FreqRaw	RO	UInt32	0x7736037	
		TiClk1Freq	RO	Linked	125.002	MHz
*	Pci	TiDtm[1]				
		enable	RW	bool	True *	
	ŀ	RceVersion				
	÷	DtmTiming JLabTimingPcie				
		enable	RW	bool	True *	
		Mode	RW	UInt1	LocalClk *	
		CodaState	RW	UInt3	DOWNLOAD *	
		SyncAlignDelay	RW	UInt2	0	
		TiSyncCount	RO	UInt32	0	
		TiDownloadSyncCount	RO	UInt32	0	
		TiPrestartSyncCount	RO	UInt32	0	
		TiTriggerCount	RO	UInt32	0	
		BusyTimeRaw	RO	UInt32	0x0	
		BusyTime	RO	Linked	0.000	%
		BusyTimeMax	RO	Linked	0.000	%
		BusyRate	RO	UInt32	0	per second
		BusyRateMax	RO	UInt32	0	per second
		TiClk0FreqRaw	RO	UInt32	0x7736318	
		TiClk0Freq	RO	Linked	125.003	MHz
		TiClk1FreqRaw	RO	UInt32	0x7736318	
		TiClk1Freq	RO	Linked	125.003	MHz

Status Summary



- We are completing an SVT DAQ mock-up setup here at SLAC
- Several people contributed, supported and helped so far.
- Currently we are fixing some hiccups..
 - Some rogue hardcodes made for the jLab machines
 - Daq Mapping should be configured properly for the small system we are testing here
- .. and some more complex issues:
 - Issues in reading back FEb configuration when using an external clock
 - Full transition to the GO state to be tested
- As soon as CODA is up and running (so the FW developers can work on the sync issue), I'm planning to switch to check EPICs integration

Front End Timing Distribution

- Control DPM forwards timing information to front end boards over PGP
 - Clock encoded into serial data stream which the front end board recovers
 - Fixed latency path for encoded PLL reset and trigger signals

