Mechanical Testing of Mirror Holder MHTestAn

Overview \& Preliminary Results from June 9 ${ }^{\text {th }}$

Sanha Cheong

SLAC MAGIS Group Meeting Jun. 10th, 2021

SLAC

3D Printed MHTestAn Boards

Visual Inspection

- Holes
- Can see the finite granularities
- The holes are not actually "circular"
- This makes the innermost dimensions smaller
- Smallest feature is $\sim 100 \mathrm{um}$
- Front-stops
- Full ring ($n=1$) seems smooth
- Other smaller legs have issues
- Potentially due to printing directions

Handling \& Inserting the Mirrors

Handling tools

- Two q-tips
- Large: ~5mm or larger
- small: ~1mm @ tip
- Plastic tweezer

Experience from inserting a few so far

- Hole diameters: $\{4.6,4.8,5.0,5.2,5.4\} \mathrm{mm}$
- 5.0 mm or smaller: do NOT fit
- 5.2 mm : quite tight to push in, but stable at
- Some mirrors + holes won't fit together
- 5.4 mm : slides in smoothly without friction

Lab Settings

520nm USB Laser

- Beamspot reduced with an iris
- Mirrors at 45deg
- Beam reflection across the room
- 154", 391.16 m \bigcirc

Sensitivity to Angular Alignment

$\boldsymbol{\theta}=$ Mirror alignment (w.r.t. laser)
$\alpha=$ Angular position of the beamspot @ wall
L = Distance between optics \& wall
$\mathrm{d}=$ Linear position of the beamspot @ wall

$$
\Delta \theta=0.1^{\circ} \Longrightarrow \Delta d=13.66 \mathrm{~mm}
$$

We want all our beamspots within $\sim 10 \mathrm{~cm}$!

Mirror "Wiggle" inside 5.2mm Holder

- With the small q-tip, it was easy to push the edges and tilt the mirror inside a holder
- This was felt throughout other practice insertions
- Observed with beam and measured with 2 different holes and mirrors
- This caused a huge deviation in beamspot
- At max. difference: $\Delta d_{\text {max }}=30 \mathrm{~cm}$ $\Rightarrow \Delta \alpha_{\text {max }}=4.4 \mathrm{deg} \Rightarrow \Delta \theta_{\text {max }}=2.2 \mathrm{deg}$
- Simple friction-holding will NOT work
- The mirrors can easily wiggle a few degrees with small force or as an error across mounting processes

Hypothesis for the Mirror "Wiggle"

Since holes are slightly bigger than our mirrors, the mirrors can be mis-aligned

- Maximum when the mirror is tilted all the way to the edge
- Mirror thickness $=2 \mathrm{~mm}$
- Mirror diameter $=5 \mathrm{~mm}$
- Hole diameter (or whatever extra space)
- $5.2 \mathrm{~mm} \Rightarrow \boldsymbol{\Delta} \boldsymbol{\theta}=6.73 \mathrm{deg}$
- $5.1 \mathrm{~mm} \Rightarrow \boldsymbol{\Delta} \boldsymbol{\theta}=3.07 \mathrm{deg}$
- $5.05 \mathrm{~mm} \Rightarrow \boldsymbol{\Delta \theta}=1.48 \mathrm{deg}$

- This alone goes beyond our tolerance of $\sim 1 \mathrm{deg}$

We want the alignment defined by the front-stop surface, not by the small extra space inside the hole. That is, we need to push the mirrors from the back.

Quick-fix: Q-tips + Tapes

5 mm q-tips + tapes to push the mirrors in from the back

- Seemed to work pretty well with 2 holes
- Observed $\Delta d=2 " \Rightarrow \Delta \theta=0.366 \mathrm{deg}$

If we pushed in properly, the angle is defined by the printed quality of the front-stop surface

- Printing error of $\varepsilon_{\text {print }}=50 \mathrm{um} \Rightarrow \Delta \boldsymbol{\theta}=0.573 \mathrm{deg}$

Scaling the Quick-Fix to multiple mirrors

Tried this with 6 mirrors, but was kind of difficult...

- Over 50 cm of max. Deviation
- The tapes are probably not pushing properly

Short-term, Temporary Fix

Use plastic rods with diameter $\sim 5 \mathrm{~mm}$, not q-tips

- $3 / 16$ " $=4.7625 \mathrm{~mm}$
- Will have to cut them ourselves though...
- McMaster-Carr Link

Long-term Solution

- Additional part behind with tapped holes
- Screws with plastic tips
- Extra-soft nylon tips to minimize contact damage
- McMaster-Carr Link

Conclusion

Summary

- 5 mm mirrors cannot fit through 5.0 mm or smaller holes
- Friction holding will NOT work, even with the 5.2 mm holes
- 5.2 mm holes allow significant angular deviation, order of few degrees
- 5.4 mm holes are loose, no apparent friction
- We need to push in from the back
- If properly pushed to the front surface, we should get:
- $\boldsymbol{\Delta} \boldsymbol{\theta}=0.573 \mathrm{deg}$ for 5 mm mirrors
- $\boldsymbol{\Delta} \boldsymbol{\theta}=0.955 \mathrm{deg}$ for 3 mm mirrors
- Additional layer with tapped holes + plastic-tip screws
- Additional board with male rods + compressible buffers (rubber disks?)
- We should get to $2^{\text {nd }}$ round of 3 D printing

