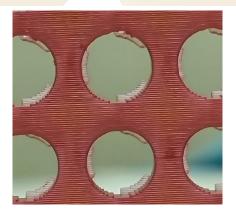
Mechanical Testing of Mirror Holder MHTestAn

Overview & Preliminary Results from June 9th

Sanha Cheong

SLAC MAGIS Group Meeting Jun. 10th, 2021



3D Printed MHTestAn Boards

Visual Inspection

- Holes
 - Can see the finite granularities
 - The holes are not actually "circular"
 - This makes **the innermost dimensions smaller**
 - Smallest feature is ~100um
- Front-stops
 - Full ring (*n*=1) seems smooth
 - Other smaller legs have issues
 - Potentially due to printing directions

• 5.4mm: slid

• 5.4mm: slides in smoothly without friction

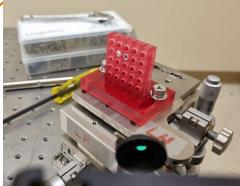
Handling & Inserting the Mirrors

Handling tools

- Two q-tips
 - Large: ~5mm or larger
 - small: ~1mm @ tip
- Plastic tweezer

Experience from inserting a few so far

- Hole diameters: {4.6, 4.8, 5.0, 5.2, 5.4} mm
- 5.0mm or smaller: do NOT fit
- 5.2mm: quite tight to push in, but stable at
 - Some mirrors + holes won't fit together



Lab Settings

520nm USB Laser

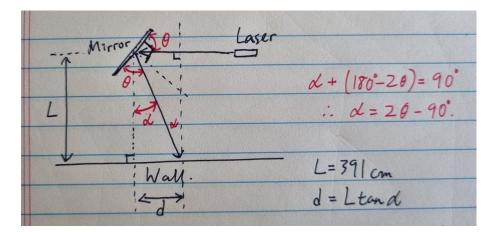
- Beamspot reduced with an iris
- Mirrors at 45deg
- Beam reflection across the room
 - 154", 391.16m
 - 0

SLAC

Sanha Cheong

Sensitivity to Angular Alignment

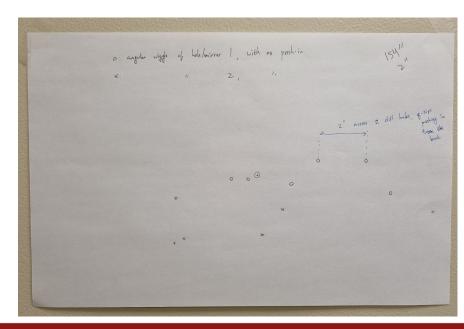
 θ = Mirror alignment (w.r.t. laser)


 α = Angular position of the beamspot @ wall

L = Distance between optics & wall

d = Linear position of the beamspot @ wall

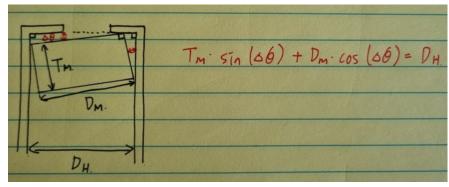
 $\Delta \theta = 0.1^{\circ} \Longrightarrow \Delta d = 13.66 \,\mathrm{mm}$


We want all our beamspots within ~10cm!

SLAG

Mirror "Wiggle" inside 5.2mm Holder

- With the small q-tip, it was **easy to push the edges and tilt** the mirror inside a holder
 - This was felt throughout other practice insertions
 - Observed with beam and measured with 2 different holes and mirrors
- This caused a huge deviation in beamspot
 - At max. difference: $\Delta d_{\text{max}} = 30$ cm
 - $\Rightarrow \Delta \alpha_{\max} = 4.4 \text{deg} \Rightarrow \Delta \theta_{\max} = 2.2 \text{deg}$
- Simple friction-holding **will NOT work**
- The mirrors can easily wiggle a few degrees with small force or as an error across mounting processes



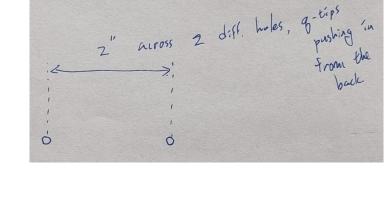
Hypothesis for the Mirror "Wiggle"

Since holes are slightly bigger than our mirrors, the mirrors can be **mis-aligned**

- Maximum when the mirror is tilted all the way to the edge
- Mirror thickness = 2mm
- Mirror diameter = 5mm
- Hole diameter (or whatever extra space)
 - 5.2mm $\Rightarrow \Delta \theta = 6.73 \deg$
 - 5.1mm $\Rightarrow \Delta \theta = 3.07$ deg
 - \circ 5.05mm $\Rightarrow \Delta \theta = 1.48$ deg
- This alone goes beyond our tolerance of ~1deg

We want the alignment defined by the front-stop surface, not by the small extra space inside the hole. That is, **we need to push the mirrors** from the back.

Sanha Cheong


Quick-fix: Q-tips + Tapes

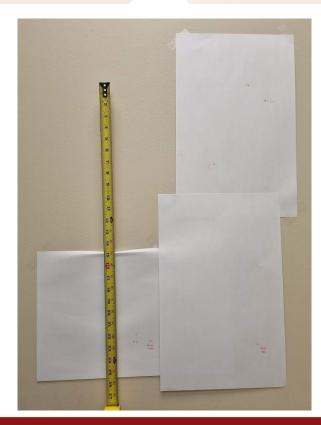
5mm q-tips + tapes to push the mirrors in from the back

- Seemed to work pretty well with 2 holes
- Observed $\Delta d = 2" \Rightarrow \Delta \theta = 0.366 deg$

If we pushed in properly, the angle is defined by the printed quality of the front-stop surface

Printing error of $\varepsilon_{\text{print}} = 50 \text{um} \Rightarrow \Delta \theta = 0.573 \text{deg}$


	Errors	īn	printed	surface,	Eprint
Mirror	1				

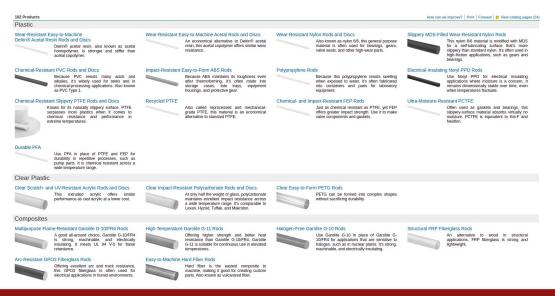


Scaling the Quick-Fix to multiple mirrors

Tried this with 6 mirrors, but was kind of difficult...

- Over 50cm of max. Deviation
- The tapes are probably not pushing properly

SLAG


Sanha Cheong

Sanha Cheong

Short-term, Temporary Fix

Use plastic rods with diameter ~5mm, not q-tips

- 3/16" = 4.7625mm
- Will have to cut them ourselves though...
- <u>McMaster-Carr Link</u>

10

Long-term Solution

- Additional part behind with tapped holes
- Screws with plastic tips
 - Extra-soft nylon tips to minimize contact damage
 - <u>McMaster-Carr Link</u>

Alloy Steel Nylon-Tip Set Screws

An extra-soft nyion tip minimizes the damage that can occur from metal-on-metal contact. Use these set screws on soft surfaces such as aluminum. The body has a black-oxide finish to resist corrosion in dry environments. Length listed does not include the tip.

CAD For technical drawings and 3-D models, click on a part number.

Lg.	Tip									
	Dia.	Lg.	Temp. Range, °F	Color	Drive Size	Hardness	Specifications Met	Pkg. Qty.		Pkg
	ide Alloy S									
2-56										
1/8"	0.031"	0.031"	-50° to 250°	Green	0.035"	Rockwell C28	ASME B18.3	10	94115A051	\$13.80
1/4"	0.031"	0.031"	-50° to 250°	Green	0.035"	Rockwell C28	ASME B18.3	10	94115A056	14.11
4-40										
1/8"	0.063"	0.031"	-50° to 250°	Green	0.050"	Rockwell C28	ASME B18.3	10	94115A103	11.66
3/16"	0.063"	0.031"	-50° to 250°	Green	0.050"	Rockwell C28	ASME B18.3	10	94115A105	8.34
1/4"	0.063"	0.031"	-50° to 250°	Green	0.050"	Rockwell C28	ASME B18.3	10	94115A106	6.85
3/8"	0.063"	0.031"	-50° to 250°	Green	0.050"	Rockwell C28	ASME B18.3	10	94115A107	8.34
6-32										
1/8"	0.063"	0.031"	-50° to 250°	Green	1/16"	Rockwell C28	ASME B18.3	10	94115A142	13.12
3/16"	0.063"	0.031"	-50° to 250°	Green	1/16"	Rockwell C28	ASME B18.3	10	94115A143	8.40
1/4"	0.063"	0.031"	-50° to 250°	Green	1/16"	Rockwell C28	ASME B18.3	10	94115A144	6,71
3/8"	0.063"	0.031"	-50° to 250°	Green	1/16"	Rockwell C28	ASME B18.3	10	94115A164	7.92
1/2"	0.063"	0.031"	-50° to 250°	Green	1/16"	Rockwell C28	ASME B18.3	10	94115A184	8.48
8-32										
1/8"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	10	94115A188	9.06
3/16"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	10	94115A189	8.40
1/4"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	25	94115A190	17.39
3/8"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	10	94115A192	8.12
1/2"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	10	94115A198	8.78
5/8"	0.094"	0.047"	-50° to 250°	Green	5/64"	Rockwell C28	ASME B18.3	10	94115A196	9.17

Sanha Cheong

SLAC

Conclusion

Summary

- 5mm mirrors cannot fit through 5.0mm or smaller holes
- Friction holding will NOT work, even with the 5.2mm holes
 - 5.2mm holes allow significant angular deviation, order of few degrees
- 5.4mm holes are loose, no apparent friction
- We need to push in from the back
 - If properly pushed to the front surface, we should get:
 - $\Delta \theta = 0.573 \text{deg for 5mm mirrors}$
 - $\Delta \theta = 0.955 \text{deg for 3mm mirrors}$
 - Additional layer with tapped holes + plastic-tip screws
 - Additional board with male rods + compressible buffers (rubber disks?)
- We should get to 2nd round of 3D printing