

Search for the Rare Decay of the Neutral Kaon, $K^0_L \rightarrow \pi^0 v \overline{v}$

Melissa A. Hutcheson Department of Physics, University of Michigan SLAC FPD Seminar

- Dark matter?
- Accelerating expansion of the universe?
- Gravity in the SM?
- Neutrino mass hierarchy & neutrino oscillations?
- Why is there more matter than antimatter in the universe?

Courtesy of Symmetry magazine

- Dark matter?
- Accelerating expansion of the universe?
- Gravity in the SM?
- Neutrino mass hierarchy & neutrino oscillations?
- Why is there more matter than antimatter in the universe?

Courtesy of Symmetry magazine

• Charge-Parity (CP) violation (does not fully explain) \rightarrow new physics?

- Dark matter?
- Accelerating expansion of the universe?
- Gravity in the SM?
- Neutrino mass hierarchy & neutrino oscillations?
- Why is there more matter than antimatter in the universe?

Courtesy of Symmetry magazine

- Charge-Parity (CP) violation (does not fully explain) → new physics?
- CKM (Cabibbo-Kobayashi-Maskawa) Matrix
 - Describes the strength of flavor-changing weak decays

V

Veak eigenstatesCKMMass eigenstates
$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

- Dark matter?
- Accelerating expansion of the universe?
- Gravity in the SM?
- Neutrino mass hierarchy & neutrino oscillations?
- Why is there more matter than antimatter in the universe?

Courtesy of Symmetry magazine

CP contribution

- Charge-Parity (CP) violation (does not fully explain) → new physics?
- CKM (Cabibbo-Kobayashi-Maskawa) Matrix
 - Describes the strength of flavor-changing weak decays
 - ο In Wolfenstein parametrization: 3 real parameters (λ, ρ , A) and 1 imaginary (η)

CKM elements determined from experimental measurements

$$V_{CKM} = \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

- Dark matter?
- Accelerating expansion of the universe?
- Gravity in the SM?
- Neutrino mass hierarchy & neutrino oscillations?
- Why is there more matter than antimatter in the universe?

Courtesy of Symmetry magazine

- Charge-Parity (CP) violation (does not fully explain) → new physics?
- CKM (Cabibbo-Kobayashi-Maskawa) Matrix
 - Describes the strength of flavor-changing weak decays
 - Unitary

Weak eigenstatesCKMMass eigenstates
$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

CKM Matrix

- Because the CKM matrix is unitary, $V_{us} * V_{ud} + V_{cs} * V_{cd} + V_{ts} * V_{td} = 0$ $\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{bmatrix} = I$
- Draw a triangle in complex plane (normalize)
- CP violation contributions are seen if height is non-zero
- Test SM by measuring the 3 sides and 3 angles and see if the triangle closes

Investigating CP violation

d s v

- Look for SM processes that exhibit CP violation and are
 - Well known
 - o **Rare**
 - Search for large deviations from the prediction
- Many ways to study CP violation (quark/lepton)

Golden processes

$$\circ$$
 $K_{L} \rightarrow \pi^{0} v \overline{v}$

- $\circ \quad K^{\bar{+}} \to \pi^+ v \bar{v}$
- Asymmetries in $B^0 \rightarrow J/\psi K_s$
- Ratio of B_s to B_d mixing

Investigating CP violation

- Look for SM processes that exhibit CP violation and are
 - Well known
 - o **Rare**
 - Search for large deviations from the prediction
- Many ways to study CP violation (quark/lepton)

Investigating CP violation

- Look for SM processes that exhibit CP violation and are
 - Well known
 - o **Rare**
 - Search for large deviations from the prediction
- Many ways to study CP violation (quark/lepton)

- 2nd order Flavor Changing Neutral Current (FCNC) that directly violates CP
- SM predicted BR of (3.00 ± 0.30) x 10⁻¹¹ rare ✓
- Clean channel, small theoretical uncertainties (~1-2%) well known ✓

 \rightarrow Good probe to search for new physics

- 2nd order Flavor Changing Neutral Current (FCNC) that directly violates CP
- SM predicted BR of (3.00 ± 0.30) x 10⁻¹¹ rare V
- Clean channel, small theoretical uncertainties (~1-2%) well known ✓

 \rightarrow Good probe to search for new physics

• Possible beyond the SM diagrams

$K^+ \rightarrow \pi^+ v \overline{v}$ & Grossman-Nir Bound

- Charged decay equally as important (NA62)
- Set model independent, indirect limit on $K_L^0 \rightarrow \pi^0 v \overline{v}$ based on isospin symmetry Grossman-Nir bound

•
$$BR(K_L^0 \to \pi^0 v \overline{v}) \le 4.4 \times BR(K^+ \to \pi^+ v \overline{v}) \to BR(K_L^0 \to \pi^0 v \overline{v}) \le 1.5 \times 10^{-9}$$

$K^+ \rightarrow \pi^+ v \overline{v}$ & Grossman-Nir Bound

- Charged decay equally as important (NA62)
- Set model independent, indirect limit on $K_L^0 \rightarrow \pi^0 v \overline{v}$ based on isospin symmetry Grossman-Nir bound

•
$$BR(K_L^0 \to \pi^0 v \overline{v}) \le 4.4 \times BR(K^+ \to \pi^+ v \overline{v}) \to BR(K_L^0 \to \pi^0 v \overline{v}) \le 1.5 \times 10^{-9}$$

Search History

- Best experimental limit set by KOTO in 2019 is BR < 3.0 x 10⁻⁹ at the 90% CL (Phys. Rev. Lett. 122, 021802)
- Improved previous limit (E391a) by an order of magnitude
- KOTO aims to measure the Branching Ratio (BR) to SM sensitivity

Department of Physics, University of Michigan

Experimental Setup

• Located in Tokai, Ibaraki Prefecture, Japan

Japan Proton Accelerator Research Complex

J-PARC Research Facility

- Located in Tokai, Ibaraki, Japan
- 30 GeV protons \rightarrow stationary gold target

K_L Production

d s v

- 5 x 10¹³ protons per 2s spill at 50 kW beam power
- ~ $10^8 \text{ K}_{\text{L}}$ per spill w/ momentum peak at 1.4 GeV/c

d s v

K_L Beamline

- Secondary K_L beamline collimated to pencil beam ~ 8x8 cm²
- K_L ~100x longer lifetime than most particles
- Neutral beam of kaons, neutrons, & photons

K_L Beamline

- Secondary K_L beamline collimated to pencil beam ~ 8x8 cm²
- K_L ~100x longer lifetime than most particles
- Neutral beam of kaons, neutrons, & photons

KOTO Detectors

d S V

- Cesium Iodide (CsI) calorimeter detects photons from signal decay
- Hermetic veto detector system (charged/photon) in place to reject other events

Experimental Strategy

s v

- Cesium Iodide (CsI) calorimeter detects 2 photons from signal decay
- Requirements:
 - Observe 2 photons with large transverse momentum (P_{T})
 - no other particles seen
- Difficulty → no charged particles and high efficiency required to detect all other particles

Data Collection History

• POT = Protons on Target

Analysis

- Challenge \rightarrow background reduction
- Blind analysis method + Monte Carlo simulations
 - 1. Signal reconstruction
 - 2. Normalization
 - 3. Background estimation and reduction

- Three variables needed to calculate BR
 - Number of signal events
 - Number of K_L^0 s generated at beam exit
 - Signal acceptance

$$BR(K_L^0 \to \pi^0 \nu \bar{\nu}) = \frac{N_{\text{signal}}}{N_{K_L^0} \times A_{\text{signal}}}$$

• Single Event Sensitivity

$$SES = \frac{1}{N_{K_L^0} \times A_{\rm signal}}$$

Signal Reconstruction

- Identify $K_L^0 \rightarrow \pi^0 v \overline{v}$ events to calculate N_{signal} Use information about the pion
- 2 clusters hit on Csl
 - Position
 - Energy
- Constraints
 - \circ π^0 mass
 - Decay position on beamline

Reconstruct π^0 decay vertex (Z position) and transverse momentum (P_{τ})

Signal Reconstruction

- Identify $K_{L}^{0} \rightarrow \pi^{0} v \overline{v}$ events to calculate N_{signal} Use information about the pion
- 2 clusters hit on Csl
 - Position 0
 - Energy 0
- Constraints
 - π^0 mass 0
 - Decay position on beamline 0

Reconstruct π^0 decay vertex (Z position) and transverse momentum (P_{τ})

 \overline{v}

Z

Decay volume

Department of Physics, University of Michigan

K

Signal Distribution

Normalization

- Calculate the number of K_{I} s at the beam exit, $N_{K_{I}^{0}}$
- 3 normalization modes
- Use $K_{i} \rightarrow 2\pi^{0}$ mode for final result (similar energy profile & momentum dist.)

Measure kaon mass $(3\pi^0)$

Measure z vertex of kaon

Signal acceptance, A_{signal}

Data checking and evaluating

Calculate K_i , flux into detectors

kinematic and veto cut efficiencies

Evaluate MC reproducibility of data

Geometric acceptance of detectors

Kinematic and veto cut efficiencies

Normalization modes also used for

M. Hutcheson

0

0

0

Ο

0

0

0

Department of Physics, University of Michigan

Reconstructed K_L mass 2016-2018 data

K, Decay Mode BR $K_{I} \rightarrow 3\pi^{0}$ 19.52% $K_L \rightarrow 2\pi^0$ 8.65 x 10⁻⁴ $K_L \rightarrow 2\gamma$ 5.47 x 10⁻⁴

- Three types of background sources
 - Other K_L decays
 - Masking background
 - Neutron induced events

- Three types of background sources
 - **T** Other K_i decays \rightarrow estimated primarily with MC
 - Masking background
 - Neutron induced events

Decay process	Branching Ratio
$K^0_{\ L} \rightarrow \pi^{\pm} e^{\mp} v_e$	40.55 ± 0.11 %
$K^0_{\ L} \rightarrow \pi^{\pm} \mu^{\mp} \nu_{\mu}$	27.04 ± 0.07 %
$K^0_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52 ± 0.12 %
К ⁰ _∟ →π⁺ п⁻ п ⁰	12.54 ± 0.05 %
$K^0_L \rightarrow \pi^0 \pi^0$	(8.64 ± 0.06) x 10 ⁻⁴
$K^0_L \rightarrow \gamma \gamma$	(5.47 ± 0.04) x 10 ⁻⁴

Monte Carlo simulation of background distribution

Rec. π⁰ Z_{vtx} [mm]

- Three types of background sources
 - \star Other K₁ decays \rightarrow estimated primarily with MC
 - Masking background
 - Neutron induced events

Ex. $K_L \rightarrow \pi^+ \pi^- \pi^0$

- Three types of background sources
 - Other K_i decays \rightarrow estimated primarily with MC Ο
 - Masking background \rightarrow estimated with MC and accidental overlay
 - Neutron induced events \cap

Masking background

 \rightarrow accidental activity causes overlapped pulses and veto timing is incorrectly calculated

K_r

CSI

- Three types of background sources
 - Other K_i decays \rightarrow estimated primarily with MC
 - \circ Masking background \rightarrow estimated with MC and accidental overlay
 - Neutron induced events \rightarrow estimated with MC and data-driven methods

Ex. neutron hits CV detector, produces π^0 (*MC*)

Monte Carlo simulation of background distribution

Reconstructed nº Pt vs. decay vertex position

d s v

- Three types of background sources
 - Other K_i decays \rightarrow estimated primarily with MC
 - \circ Masking background \rightarrow estimated with MC and accidental overlay
 - Neutron induced events \rightarrow estimated with MC and data-driven methods

Ex. Neutron hits CsI creates 2 hadronic showers (data-driven)

Background Reduction Methods

- Goal \rightarrow apply cuts to reduce background, retain signal
- 2 types of background reduction methods
 - \bigstar Traditional \rightarrow energy, time, kinematics, veto information
 - $\circ \quad \text{Novel} \rightarrow \text{machine learning/Fourier analysis}$

Kinematic Cuts – γ Selection Cuts		
$-\mathrm{E}_{\gamma}$	$100 \text{ MeV} \le E_{\gamma} \le 2000 \text{ MeV}$	
CsI Fiducial	$ x_{\gamma} \geq 150 \text{ mm}, y_{\gamma} \geq 150 \text{ mm},$	
	$\sqrt{x_{\gamma}^2 + y_{\gamma}^2} \le 850 \text{ mm}$	
γ Cluster Distance	$\geq 300 \text{ mm}$	
γ Cluster Distance from Dead Ch.	$\geq 53 \text{ mm}$	
Kinematic Cuts – Background Source Cuts		
$ heta_{\mathrm{proj},\gamma}$	$\leq 150^{\circ}$	
E_{γ} Ratio	≥ 0.2	
$\mathrm{E}_{\gamma}^{+} heta_{\gamma}$	$\geq 2500 \text{ MeV} \cdot \text{deg}$	
γ Cluster Size	≥ 5	
$\mathrm{RMS}_{\mathrm{clus}}$	$\geq 10 \text{ mm}$	
π^0 Kinematic	Accepted regions in Figure 5.15	
$\Delta T_{ m vtx}$	$\leq 1 \text{ ns}$	

Background Reduction Methods

- 2 types of background reduction methods
 - \circ Traditional \rightarrow energy, time, kinematics, veto information
 - \star Novel \rightarrow machine learning/Fourier analysis

Cluster shape discrimination with neural networks (1/1500 neutrons remaining)

Pulse shape discrimination with Fourier analysis (4/125 neutrons remaining)

• Once normalization analysis is complete \rightarrow

$$SES = \frac{1}{N_{K_L^0} \times A_{\rm signal}}$$

- Finalize all background estimations
- Apply final cut set to reduce background and retain signal
- Unblind the data
 - \rightarrow 2015 results (briefly)
 - \rightarrow 2016-2018 results

- Before unblinding, estimated 0.42 ± 0.18 BG
- SES = $(1.3 \pm 0.01_{stat} \pm 0.14_{syst}) \times 10^{-9}$

Background source	Expected no. events	
K _L Decays		
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.05 ± 0.02	
$K_L \rightarrow 2\pi^0$	0.02 ± 0.02	
Other K _L decays	0.03 ± 0.01	
Neutron induced		
Hadron cluster on Csl	0.24 ± 0.17	
Upstream π^0 from NCC	0.04 ± 0.03	
Ον η	0.04 ± 0.02	
Total background	0.42 ± 0.18	

- Before unblinding, estimated 0.42 ± 0.18 BG
- SES = $(1.3 \pm 0.01_{stat} \pm 0.14_{syst}) \times 10^{-9}$

Background source	Expected no. events		
K _L Decays			
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.05 ± 0.02		
$K_L \rightarrow 2\pi^0$	0.02 ± 0.02		
Other K _L decays	0.03 ± 0.01		
Neutron induced			
Hadron cluster on Csl	0.24 ± 0.17		
Upstream π^0 from NCC	0.04 ± 0.03		
ΟΥ η	0.04 ± 0.02		
Total background	0.42 ± 0.18		

- Before unblinding, estimated 0.42 ± 0.18 BG
- SES = (1.3 ± 0.01_{stat}± 0.14_{syst}) x 10⁻⁹

Background source	Expected no. events	
K _L Decays		
$K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	0.05 ± 0.02	
$K_{L} \rightarrow 2\pi^{0}$	0.02 ± 0.02	
Other K _L decays	0.03 ± 0.01	
Neutron induced		
Hadron cluster on Csl	0.24 ± 0.17	
Upstream π^0 from NCC	0.04 ± 0.03	
Ον η	0.04 ± 0.02	
Total background	0.42 ± 0.18	

Improved previous limit (E391a) ~1 order of magnitude

2016-2018 Results

• Improved SES by 1.8x from 2015 results \rightarrow SES = (7.2 ± 0.05_{stat} ± 0.66_{syst}) x 10⁻¹⁰

2016-2018 Results

• SES = $(7.2 \pm 0.05_{stat} \pm 0.66_{syst}) \times 10^{-10}$

Background source	Expected no. events	
K _L Decays		
$K_L \rightarrow \pi^+ \pi^- \pi^0$	< 0.02	
$K_L \rightarrow 2\pi^0$	< 0.18	
$K_L \rightarrow 2\gamma$	0.005 ± 0.005	
$K_L \rightarrow 3\pi^0$ (masking)	< 0.04	
$K_L \rightarrow \pi^{\pm} e^{\overline{+}} v$ (masking)	< 0.09	
Neutron induced		
Hadron cluster on Csl	0.017 ± 0.002	
Upstream π^0 from NCC	0.001 ± 0.001	
Ον η	0.03 ± 0.01	
CV π ⁰	< 0.10	
Total background	0.05 ± 0.02	

2016-2018 Results

- Unblinded data end of August 2019
- After unblinding 4 candidate events in signal region

Background source	Expected no. events	
K _L Decays		
$K_L \rightarrow \pi^+\pi^-\pi^0$	< 0.02	
$K_L \rightarrow 2\pi^0$	< 0.18	
$K_L \rightarrow 2\gamma$	0.005 ± 0.005	
$K_L \rightarrow 3\pi^0$ (masking)	< 0.04	
$K_L \rightarrow \pi^{\pm} e^{\mp} v$ (masking)	< 0.09	
Neutron induced		
Hadron cluster on Csl	0.017 ± 0.002	
Upstream π^0 from NCC	0.001 ± 0.001	
Ον η	0.03 ± 0.01	
CV π ⁰	< 0.10	
Total background	0.05 ± 0.02	

Event 2 (Run 75)

• After rechecking analysis parameters -> incorrect timing parameter set for vetoing

On-time hit was not selected due to incorrect nominal time setting (peak selection)

on-time

Event 0 (Run 69)

Department of Physics, University of Michigan

400 ime 500

200 300

Event 3 (Run 79)

• Hit in FB just outside veto window

M. Hutcheson

Event 1 and event (4) have no distinguishing features

Outside signal region \rightarrow not a candidate event

Additional Background Studies

- Reevaluated previous K₁ backgrounds with higher statistics
- Estimated BG from other K₁ decays expected to have small contributions

	BG Source	Estimated # of BG
	Other K_L Decay Backgrounds	
	$K_L^0 \to \pi^{\pm} e^{\mp} \nu_e \ (\pi^{\pm} \to \pi^0 \text{ conversion})$	< 0.04
Upper limits on BG @ 90% CL	$K_L^0 \to \pi^{\pm} e^{\mp} \nu_e \ (\pi^{\pm} \text{ beta decay})$	< 0.01
	$K_L^0 \to \pi^\pm e^\mp \nu_e \gamma$	< 0.05
	$K^0_L ightarrow \pi^0 \pi^\pm e^\mp u_e$	< 0.04
	$K_L^0 \to \pi^+ \pi^-$	< 0.03
	$K^0_L ightarrow ee \gamma$	< 0.09
	$K_L^0 \to K^\pm e^\mp \nu_e$	< 0.04
	$K_L^0 \to 2\gamma \ (\text{core-like})$	< 0.11

- Considered two main, new sources of background
 - \rightarrow K[±] background
 - \rightarrow K₁ \rightarrow 2 γ background from halo-K₁

Charged Kaon Background

- K[±] generated in beamline at 2nd collimator
- Dangerous BG: $K^{\pm} \rightarrow \pi^{0}e^{\pm}v \text{ decay (BR~5\%)}$
 - \circ π^0 kinematics similar to π^0 in signal decay
 - Only e^{\pm} for vetoing (backwards $e^{\pm} \rightarrow$ small energy \rightarrow large inefficiency)

- Background depends on K[±] flux \rightarrow estimated w/ simulation \rightarrow K⁺ /K_L \sim 1.3×10⁻⁶
 - Measure K^{\pm} flux in dedicated run (June 2020)
 - Normalize MC BG estimation with K[±] flux measurement

K[±] Flux Measurement

- Dedicated trigger to collect $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ events \rightarrow
- Collected 847 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ candidate events
- Measured K[±] flux ratio = $(2.6 \pm 0.1) \times 10^{-5}$

 $R_{K^{\pm}} = F_{K^{\pm}} / F_{K_L}$

K[±] Background Estimation

- Simulated 6 major K[±] decays •
- Normalized BG estimation to measured K[±] flux

	K^{\pm} Decay Mode	Estimated # of BG
lux	$K^{\pm} \to \pi^0 e^{\pm} \nu_e$	0.81 ± 0.13
	$K^{\pm} \to \pi^0 \mu^{\pm} \nu_{\mu}$	0.02 ± 0
	$K^{\pm} \to \pi^0 \pi^{\pm}$	0.004 ± 0
No events remaining in MC	$K^{\pm} \to \mu^{\pm} \nu_{\mu}$	0
	${\boldsymbol{K}}^\pm \to \pi^\pm \pi^\pm \pi^\mp$	0
	$K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$	0
	Total K^{\pm} BG	0.84 ± 0.13

Correct K[±] background estimation with acceptance ratio of K[±] events with $K_{I} \rightarrow \pi^{0} v v$ selection cuts (data-driven method)

Total K^{\pm} background = **0.87 \pm 0.25**

Halo K_L Background

- K_1 scatters @ second collimator \rightarrow finite transverse momentum
- Dangerous: no extra particles to veto

- Estimate Halo K_L flux using sample of $K_I \rightarrow 3\pi^0$ events
 - Select events with large COE radius
 - \circ Halo K_L flux measurement ~7x MC estimation
- MC BG estimation scaled to halo K₁ flux

Halo *K_L* BG = 0.26 ± 0.07

Final BG Estimation

Central values of all BGs
 → Total BG = 1.22 ± 0.26

Background source	Expected no. events	Note
K _L Decays		
$K_L \rightarrow \pi^+ \pi^- \pi^0$	< 0.02	
$K_L \rightarrow 2\pi^0$	< 0.08	Updated, incr. MC stat.
$K_L \rightarrow 2\gamma$ (vacuum window)	0.005 ± 0.005	
$K_L \rightarrow 3\pi^0$ (masking)	0.01 ± 0.01	Updated, incr. MC stat.
$K_L \rightarrow \pi^{\pm} e^{\mp} v$ (masking)	< 0.08	Updated, 5% timing diff
$K_L \rightarrow 2\gamma$ (halo K_L)	0.26 ± 0.07	Newly estimated
K [±] Background		
$K^{\pm} \rightarrow \pi^0 e^{\pm} v$	0.84 ± 0.25	Newly estimated
$K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$	0.02 ± 0.02	Newly estimated
$K^{\pm}\!$	0.004 ± 0.004	Newly estimated
Neutron induced		
Hadron cluster on Csl	0.017 ± 0.002	
Upstream π^0 from NCC	0.03 ± 0.03	Updated, wrong veto thresh.
CV η	0.03 ± 0.01	
CV π ⁰	< 0.10	
Total background	1.22 ± 0.26	

Final 2016-2018 Results

 $K_{L} \rightarrow \pi^{0} \nu \nu$ $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$

> CVη CV₁

NCC^{π⁰}

KL→2π $K_L \rightarrow \pi^{\pm} \pi^{\pm} \pi^0$

KL→3π

Halo KL→2γ

HadronCluster

Core K_L→2γ

Improvements after 2018

- d s v
- Installed MPPCs for dual-ended readout (n/γ discrimination) on CsI after 2018 runs

- New T1 target installed in Hadron Hall in Fall 2019 \rightarrow higher beam power
- Iron walls installed in 2019 and 2020 to reduce accidental activity

Improvements after 2020

- Developed new veto detector to reduce K[±] background
 - Upstream Charged Veto (UCV)
 0.5mm-thick scintillator fibers, read out with MPPC
 - Prototype tested in 2020 June run
 - New UCV installed for 2021 data collection
 - Reduce K[±] BG by 95%
- Developing new cuts for halo K_L background
 - cluster shape discrimination
 - \circ Reduce halo K_L BG by 96%

Impact and Conclusions

- Highest sensitivity for $K_{I} \rightarrow \pi^{0} v \overline{v}$ search
- Considered 2 new backgrounds \rightarrow developing ways to reduce
- Continued data collection is necessary \rightarrow 2021 experimental runs

Summary

- Finalized analysis of the 2016-2018 data set for the $K_1 \rightarrow \pi^0 v \overline{v}$ search
- Achieved a SES = $(7.2 \pm 0.05_{stat} \pm 0.66_{syst}) \times 10^{-10}$
- 3 candidate events observed in the signal region with background expectation of 1.22 ± 0.26 (probability = 13%)
- Identified 2 new background sources → important for reaching SM sensitivity
- $BR(K_{I} \rightarrow \pi^{0} v \bar{v}) < 4.9 \times 10^{-9} (@ 90\% CL)$ Phys. Rev. Lett. **126**, 121801 (2021)
- KOTO will continue collecting data and continues to push down to SM sensitivity with new background reduction methods

