Mirror Holder 3D Print Test Grid

Sanha Cheong

Office of Science

How to hold the mirrors in place

Mirror Holder Design: Overview

Front (angled)

Back (angled)

Cross-section (side)

Mirror Holder Design: Main Parameters

Front-stop depth

- If too thick, blocks/carves lightcone
- No thicker than 1mm?
- If too thin, too weak mechanically

Front-stop / Aperture shape

- Doesn't have to be circular?
(see later slides)

Front-stop overlap

- Mechanical stability
- Determines:
$R_{\text {mirror }}=R_{\text {aperture }}+R_{\text {overlap }}$

- Limits packing efficiency

Inner radius (regular n-gon)

- Impacts how the mirror clicks in - Strength, alignment, etc.
- Radius ~ mirror R
- Optimal size for friction holding?

Mirror Holder Design: Front-stop Shape

Front-stop

- Size limits aperture
- Smoothness impacts angular alignment
- Doesn't have to be a full "ring"---worth exploring different designs

$n=3$

$n=4$

$$
n=3
$$

smaller span

Parameter Relevant for Mechanical Testing

Main goal: friction holding mechanism \& overall stability

- Mirror
- Thickness: 2 mm
- Radius: 2.5 mm
- Hole
- Inner radius: $\{2.3,2.4,2.5,2.6,2.7\} \mathrm{mm}$
- Front-stop
- Depth: 0.5 mm
(not too thick, not too thin)
- Overlap: $\{0.2,0.4,0.6,0.8,1.0\} \mathrm{mm}$
- Shape: $n=\{1,3,4\}$

$$
R_{\text {mirror }}=R_{\text {aperture }}+R_{\text {overlap }}
$$

3D Print Test Grid

3D-print a grid for mirror holder, mainly testing:

- Friction holding
- Angular alignment
- Overall mechanical stability

Inner Radius

$\mathrm{R}+/-0.2 \mathrm{~mm}$

Front-stop design (size \& shape)

$$
\mathrm{n}=\{1,3,4\} \times \text { Overlap }[0.2,1.0] \mathrm{mm}
$$

Conclusion

My questions

- Precision, min. feature size, etc. depends on specific printing technology
- Overview of printing tech. \& tolerances
- Which one should we go with? Is cost a factor too?
- Do the parameters seem reasonable?
- If so, which companies shall we consider?

Plans going forward

- Finalize the test grid
- Order the test grid $+\sim 10$ mirrors for testing
- Study the mechanical properties \& angular alignment

