Simulation of the multi-view imaging system with differentiable ray tracing

Maxime Vandegar, Michael Kagan Murtaza Safdari, Ariel Schwartzman

March 2021

Goals

• System insights:

- Provides image modeling for potential system design.
- Design optimization.
- Data analysis (i.e. parameter inference):
 - Data / simulation comparison.
 - Systematic uncertainty modeling.
 - 3d reconstruction & parameter estimation.

SLAO

Approach

- A simulator to map photon emission from the atom cloud to a multi-view image on sensor.
- Physics-driven approach to rendering images on sensor.
 - 1. Stochastic emission from the atom cloud.
 - 2. Trace light rays through the optical system.
 - Includes interaction with lenses, mirrors, apertures, etc.
 - **3**. Trace rays until they hit the sensor.

Software design

- Implemented in Python within automatic differentiation framework (PyTorch).
- Every traced ray is differentiable end-to-end.
 - Enables gradient descent from images back to atom cloud / system properties for optimization & parameter estimation.
 - Natively ready for interfacing with machine learning algorithms & pipeline.
- High throughput.
 - Vectorizable trace many rays at once.
 - Parallizable over multiple devices.
 - Support on CPU / GPU.
 - Just-in-time (jit) compilation for reducing computational time.

Simulator's fidelity

Currently using perfect lens / mirror / sensor approximation.

- Thin lens model, no readout noise, no quantum efficiency, ...
- Easy to add complexity and noise to the system.
 - Which should we add first?

Simulated views (1)

Simulated views (2)

SLAC

Views from the 100 mirrors (out of 500) that are the closest to the optical axis.

Views from the 9 mirrors that are the closest to the optical axis.

Simulated views (3)

SLAC

View from the mirror that is the closest to the optical axis (50×50 pixels).

View from the mirror that is the closest to the optical axis (logarithmic norm).

Inference

- The simulator will be a key component in the inference pipeline.
- Enables 3d reconstruction & simulation-based inference in order to learn confidence intervals or posterior distributions over ϕ or $\Delta \phi$.
- The simulator's differentiability allows solving $||A(x) b||^2$ (or other reconstruction objectives) with gradient descent.
 - *b* is an observed image.
 - *A* is the differentiable simulator.
 - x is the model of the atom cloud.
 - E.g. parametrized wave function, voxel, neural network, implicit function, ...

More about physically based rendering

-SLAC

- Photon mapping.
 - Rays are traced from source to sensor (current approach).
 - Requires to model the interaction of 1B rays with the system (computational expensive).
 - Makes it difficult to compute $||A(x) b||^2$ and its gradients in a tractable manner.
- Path tracing:
 - Rays are traced from sensor to source (being implemented).
 - Integrate radiant flux over the ray's path.
 - Most common approach used in computer graphics.
 - Allows to query the value of a single pixel and do per-pixel minibatch gradient descent.

Next steps

- 1. Finish the path tracing implementation.
- 2. First implementation of 3d reconstruction & maximum likelihood estimation of parameters given a wave function from.
- 3. Add more sources of noise & complexity to make the simulator more realistic.
- 4. Interface the simulator with ML approaches to simulation-based inference.

Questions

- Does the interference pattern always face the same direction?
- Do we need to consider any coherence between emitted photons?
- Given the low number of photons, can we still model the photon paths with classical geometric optics?
- Should we target including lasers-induced noise sources in the near term?
- Are there existing simulators / resources for understanding how to simulate the wave function propagation through the pipe.

$$\frac{i\left(\frac{2}{\pi}\right)^{3/4}(mw_0)^{3/2}\left(\frac{1}{\sqrt{2}} + \frac{e^{i\left(a\text{Quad kFringe}^2x^2 + k\text{Fringe}x\right) + i\phi}}{\sqrt{2}}\right)e^{-\frac{m\left((x-x_A)^2 + (y-y_A)^2 + (z-z_A)^2\right)}{4mw_0^2 + 2i\,\text{tFinalBS}\,\hbar}}}{\sqrt{-\left(2mw_0^2 + i\,\text{tFinalBS}\,\hbar\right)^3}}$$

Gradients and 3d reconstruction

• The simulator's differentiability allows forwarding perpixel gradients to the cloud parameters (chain rule).

