
Simulation of the multi-view imaging
system with differentiable ray tracing

Maxime Vandegar, Michael Kagan
Murtaza Safdari, Ariel Schwartzman

March 2021

2

Goals

• System insights:
• Provides image modeling for potential system design.
• Design optimization.

• Data analysis (i.e. parameter inference):
• Data / simulation comparison.
• Systematic uncertainty modeling.
• 3d reconstruction & parameter estimation.

3

Approach

• A simulator to map photon emission from the atom cloud
to a multi-view image on sensor.

• Physics-driven approach to rendering images on sensor.
1. Stochastic emission from the atom cloud.
2. Trace light rays through the optical system.

- Includes interaction with lenses, mirrors, apertures, etc.
3. Trace rays until they hit the sensor.

Sensor

Lens Atom cloud

Mirror

4

Software design

• Implemented in Python within automatic differentiation
framework (PyTorch).

• Every traced ray is differentiable end-to-end.
• Enables gradient descent from images back to atom cloud /

system properties for optimization & parameter estimation.
• Natively ready for interfacing with machine learning algorithms &

pipeline.

• High throughput.
• Vectorizable – trace many rays at once.
• Parallizable – over multiple devices.
• Support on CPU / GPU.
• Just-in-time (jit) compilation for reducing computational time.

5

Simulator’s fidelity

• Currently using perfect lens / mirror / sensor approximation.
• Thin lens model, no readout noise, no quantum efficiency, …

• Easy to add complexity and noise to the system.
• Which should we add first?

6

Simulated views (1)

Patches of 40 x 40 pixels (500 mirrors)

7

Simulated views (2)

Views from the 100 mirrors (out of 500)
that are the closest to the optical axis.

Views from the 9 mirrors that are
the closest to the optical axis.

8

Simulated views (3)

View from the mirror that is the closest
to the optical axis (50 x 50 pixels).

View from the mirror that is the closest
to the optical axis (logarithmic norm).

9

Inference

• The simulator will be a key component in the inference
pipeline.

• Enables 3d reconstruction & simulation-based inference in
order to learn confidence intervals or posterior distributions
over 𝝓 or Δ𝝓.

• The simulator’s differentiability allows solving ||𝐴 𝑥 − 𝑏||!

(or other reconstruction objectives) with gradient descent.
- 𝑏 is an observed image.
- 𝐴 is the differentiable simulator.
- 𝑥 is the model of the atom cloud.

• E.g. parametrized wave function, voxel, neural network, implicit
function, …

10

More about physically based rendering

• Photon mapping.
• Rays are traced from source to sensor (current approach).
• Requires to model the interaction of 1B rays with the system

(computational expensive).
- Makes it difficult to compute ||𝐴 𝑥 − 𝑏||! and its gradients in a

tractable manner.
• Path tracing:
• Rays are traced from sensor to source (being implemented).

- Integrate radiant flux over the ray’s path.
• Most common approach used in computer graphics.
• Allows to query the value of a single pixel and do per-pixel

minibatch gradient descent.

11

Next steps

1. Finish the path tracing implementation.
2. First implementation of 3d reconstruction & maximum

likelihood estimation of parameters given a wave
function from.

3. Add more sources of noise & complexity to make the
simulator more realistic.

4. Interface the simulator with ML approaches to
simulation-based inference.

12

Questions

• Does the interference pattern always face the same
direction?

• Do we need to consider any coherence between emitted
photons?

• Given the low number of photons, can we still model the
photon paths with classical geometric optics?

• Should we target including lasers-induced noise sources
in the near term?

• Are there existing simulators / resources for
understanding how to simulate the wave function
propagation through the pipe.

14

Interference pattern

15

Gradients and 3d reconstruction

• The simulator’s differentiability allows forwarding per-
pixel gradients to the cloud parameters (chain rule).

