RCE for Pixel Rd53 Chip Readout

Speaker: Zijun Xu (zixu@cern.ch)
Co-authors: Larry Ruckman, Martin Kocian, Matthias Wittgen, Su Dong

49th SLAC Summer Institute
16-27 August 2021
ATLAS Inner Tracker Upgrade and Pixel FE

- **ATLAS ITk Upgrade**
 - current Inner Detector -> all-silicon ITk
 - pixel: $1.7 \text{ m}^2 \rightarrow 13 \text{ m}^2$ (5×10^9 channels)
 - tracking coverage η: 2.5 -> 4.0
 - trig rate: 100 kHz -> 1 MHz
 - pixel data rate increased by a factor of $O(100)$

- **Rd53 Front-End chip for pixel detector**
 - Common design framework for ATLAS and CMS
 - chip is fully controlled with a single serial input stream
 - Lock and Data Recovery circuit (CDR) to extract clock from the 160Mbps Cmd input
 - All data, messages, and configuration read-back are output on high speed serial ports
 - up to **4x 1.28 Gbps** nominal bandwidth

https://indico.cern.ch/event/995633/contributions/4259523/
RCE for Pixel RD53a/b readout

- A new generation RCE (Reconfigurable Cluster Element) system
 - Xilinx ZCU102 board with **UltraScale+ ZYNQ** MPSoC XCZU9EG
 - Quad-core Arm Cortex-A53, 4GB of DDR4 memory, 64-bit

- Custom FMC adaptor to direct run RD53a/b
 - **SelectIO HP** pins for 160Mbps Cmd and 1.28Gbps data
 - Retimer (160MHz clock, PLL, and flip-flop) on the FMC card to reduce Cmd stream random jitter to 2ps, comparable to lpGBT e-link
 - Adjustable Cmd pre-emphasis and data equalizer for lossy data transmission chain
 - FMC pin mapping is compatible with various FPGA boards
RCE DAQ Development

• Based on the common FW&SW library, rapid developments to support various DAQ interface/format/protocols in parallel

• FW building blocks for a wide range of Xilinx FPGAs/SoCs (RCE like, PCIe cards)
 • https://github.com/slaclab/rce-gen3-fw-lib
 • example: https://github.com/slaclab/rce-gen3-fw-examples
 • Ruckus: Vivado Build System based on Makefiles, https://github.com/slaclab/ruckus

• Hardware Abstraction SW library
 • Rogue: https://github.com/slaclab/rogue
 • Python bindings for rapid DAQ prototyping and GUIs, can be configured for pure C++ use
RCE DAQ Development

- common Rd53 chip calibration software
 - https://gitlab.cern.ch/YARR/
 - aim to support various DAQ platform: YARR, FELIX, RCE, BDAQ ...
- RCE Advantage:
 - SoC CPU embedded in FPGA fabric with direct access to FE I/O ports and firmware resources not confined by PCIe bridge

RCE Extension for Pixel RD53 Readout

• Based on the common FW&SW library, enables rapid development to support various data interfaces/formats/protocols

Rd53 + external FPGA + RCE through PGP protocol
Rd53 + external FPGA + PC through 1G/10G-Eth or PCIe

RD53 + FMC + ZCU102
RD53 + IpGBT + ZCU102
Backup
Rd53 readout chip for Pixel Detector

- Common design framework for ATLAS and CMS
- Rd53a is a prototyping chip
 - 3 analog FEs: Sync, Linear, Diff
- Rd53b
 - all RD53A elements with bug fixes, technical improvements where needed, and additional features
 - ShuntLDO, CDR/PLL, ...
 - Optimal data formatting and compression
- ATLAS (ITkPix): 400x384 pixels, differential FE
- CMS (CROC): 432x336 pixels, linear FE

<table>
<thead>
<tr>
<th>Chip size (ATLAS)</th>
<th>20 × 21 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>50 × 50 μm²</td>
</tr>
<tr>
<td>High hit rate</td>
<td>3 GHz/cm²</td>
</tr>
<tr>
<td>(vs. FEI4: 400 MHz/cm²)</td>
<td></td>
</tr>
<tr>
<td>High trigger rate</td>
<td>1 MHz with 12.8 μs latency</td>
</tr>
<tr>
<td>High data rate</td>
<td>up to 5.12 Gbit/s per chip</td>
</tr>
<tr>
<td>Low threshold</td>
<td>~ 600 e</td>
</tr>
<tr>
<td>Radiation tolerance</td>
<td>500 Mrad</td>
</tr>
<tr>
<td>Low power</td>
<td>~ 4 μA/pixel (analog/digital)</td>
</tr>
</tbody>
</table>

https://indico.cern.ch/event/995633/contributions/4259523/
Software for Pixel RD53a/b readout

• Operating Systems:
 • **CentOS7**: 64bit for ZCU102, 32bit for RCE gen-3 (COB and HSIO2)
 • Arch Linux (abandoning), RTEMS without SMP support (abandoned)
 • Ubuntu LTS might be an option for next version ARM OS

• RCE Software Development Kit
 • host OS: CentOS7 x86/64
 • format and install root file system to SD card
 • Crosstool-ng to generate cross compilers for ARM and AARCH64
What is **RCE** (Reconfigurable Cluster Element)

Design of the SLAC RCE Platform: A general purpose ATCA based data acquisition system

Publisher: IEEE
14 Author(s)

Abstract:
The SLAC RCE platform is a **general purpose clustered data acquisition system** implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element (RCE), which is a system-on-chip design based upon the Xilinx Zynq family of FPGAs, mounted on custom COB daughter-boards. The Zynq architecture couples a dual core ARM Cortex A9 based processor with a high performance 28nm FPGA. The RCE has 12 external general purpose bi-directional **high speed links**, each supporting serial rates of up to 12Gbps. 8 RCE nodes are included on a COB, each with a 10Gbps connection to an on-board 24-port Ethernet switch integrated circuit. The COB is designed to be used with a standard full-mesh ATCA backplane allowing multiple RCE nodes to be tightly interconnected with minimal interconnect latency. Multiple shelves can be clustered using the front panel.

https://ieeexplore.ieee.org/document/7431254
Old Gen RCE SoC Readout

- Reconfigurable Cluster Element (RCE) is a SLAC R&D project for a generic SoC DAQ/trigger system, starting from 2007
 - CPU and FPGA fabric within a same chip for a compact data passage
 - tight coupling between firmware and software
- Gen 3 (2013) based on Zynq-7000 SoC
 - COB (Cluster-On-Board): ATCA blade with custom RTM specialized for user applications, up to 4 DPMs and 1 DTM
 - HSIO2: standalone bench-top readout board, 1 DTM
 - RCE mezzanine card:
 - DPM (Data Processing Modules) and DTM (Data Transmission Module, network connectivity)
 - Xilinx Zynq-based SoC, multi-core ARM CPU, GB of memory, DMA interface to FPGA fabric, Versatile high/low-speed I/O interface
Rd53 chip calibration Performance Optimization

- only aim for Rd53 pixel chip
 - utilizing all the features of Rd53 for best performance
 - event header/ID in data stream => could async Tx and Rx during digital scan
 - high I/O throughput
 - pixel chip digital scan: 5.0 sec with vanilla ITk SW on RCE => 1.2 sec after modification

- ARM SIMD (single instruction multiple data)
 - improves CPU/software efficiency
 - Similarly, SSE for INTEL CPU
 - speed up raw data decoding by a factor of ~3
 - digital scan takes 0.7 sec with SIMD
 - (*raw Cmd+Data transferring needs ~0.4 sec, limited by the chip I/O speed)
 - other types of scan got similar improvements
RCE for Pixel RD53a/b Testbeam

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=242295409
10.2 Aurora and RD53B Data

Figure 59: Examples of encoded stream data with no Aurora block boundaries shown: (a) one hit quarter-core each in two ccols (note last hit bit is set for both), (b) two separated quarter-cores hit in same ccol (last hit set only for second), (c) two neighbor quarter-cores hit in same ccol, (d) one hit quarter-core each in two different events, (e) an empty event followed by an event with one hit quarter-core, followed by another event. A color key to the field types is shown at the bottom. The number of bits in each field is shown in square brackets.