# RCE for Pixel Rd53 Chip Readout

Speaker: Zijun Xu (zixu@cern.ch)

Co-authors: Larry Ruckman, Martin Kocian, Matthias Wittgen, Su Dong

49th SLAC Summer Institute

16-27 August 2021





University

#### ATLAS Inner Tracker Upgrade and Pixel FE

- ATLAS ITk Upgrade
  - current Inner Detector -> all-silicon ITk
  - pixel: 1.7m<sup>2</sup> -> 13m<sup>2</sup> (5e9 channels)
  - tracking coverage η: 2.5 -> 4.0
  - trig rate: 100 kHz -> 1 MHz
  - pixel data rate increased by a factor of O(100)
- Rd53 Front-End chip for pixel detector
  - Common design framework for ATLAS and CMS
  - chip is fully controlled with a single serial input stream •
    - Lock and Data Recovery circuit (CDR) to extract clock from the 160Mbps Cmd input
  - All data, messages, and configuration read-back are output on high speed serial ports
    - up to 4x 1.28 Gbps nominal bandwidth







TkPixV1 chip on Single Chip Card (SCC) [3]

### RCE for Pixel RD53a/b readout

- a new generation RCE(Reconfigurable Cluster Element ) system
  - Xilinx ZCU102 board with **UltraScale+ ZYNQ** MPSoC XCZU9EG
  - quad-core Arm Cortex-A53, 4GB of DDR4 memory, 64-bit
- Custom FMC adaptor to direct run RD53a/b
  - SelectIO HP pins for 160Mbps Cmd and 1.28Gbps data
  - Retimer (160MHz clock, PLL, and flip-flop) on the FMC card to reduce Cmd stream random jitter to **2ps**, comparable to lpGBT e-link
  - adjustable Cmd pre-emphasis and data equalizer for lossy data transmission chain
  - FMC pin mapping is compatible with various FPGA boards





## RCE DAQ Development

- Based on the common FW&SW library, rapid developments to support various DAQ interface/format/protocols in parallel
- FW building blocks for a wide range of Xilinx FPGAs/SoCs (RCE like, PCIe cards)
  - <u>https://github.com/slaclab/rce-gen3-fw-lib</u>
  - example: <u>https://github.com/slaclab/rce-gen3-fw-examples</u>
  - Ruckus: Vivado Build System based on Makefiles, <u>https://github.com/slaclab/ruckus</u>
- Hardware Abstraction SW library
  - Rogue: <u>https://github.com/slaclab/rogue</u>
  - Python bindings for rapid DAQ prototyping and GUIs, can be configured for pure C++ use

| Application Software                |                     |
|-------------------------------------|---------------------|
| Generic Drivers & SLAC Support So   | ftware              |
| Firmware / Software Interface       |                     |
| SLAC Provided Firmware Modules      |                     |
| Application Firmware                | Peripheral Hardware |
| SLAC Modules Application<br>Modules | æ                   |
| External Interfaces                 |                     |



#### RCE DAQ Development

common Rd53 chip calibration software

AXI DMA

- https://gitlab.cern.ch/YARR/ •
- aim to support various DAQ platform: YARR, FELIX, RCE, BDAQ ...
- RCE Advantage: ٠

BORATORY

 SoC CPU embedded in FPGA fabric with direct access to FE I/O ports and firmware resources not confined by PCIe bridge

Trigger

Loop

Cmd Gearbox

Data

batcher



#### RCE Extension for Pixel RD53 Readout

 Based on the common FW&SW library, enables rapid development to support various data interfaces/formats/protocols

Rd53 + external FPGA + RCE through PGP protocol Rd53 + external FPGA + PC through 1G/10G-Eth or PCIe



RD53 + FMC + ZCU102 RD53 + lpGBT + ZCU102





# Backup

### Rd53 readout chip for Pixel Detector

- Common design framework for ATLAS and CMS
- Rd53a is a prototyping chip
  - 3 analog FEs: Sync, Linear, Diff
- Rd53b
  - all RD53A elements with bug fixes, technical improvements where needed, and additional features
    - ShuntLDO, CDR/PLL, ...
    - Optimal data formatting and compression
  - ATLAS (ITkPix): 400x384 pixels, differential FE
  - CMS (CROC): 432x336 pixels, linear FE

| Chip size (ATLAS)   | $20 \times 21 \text{ mm}^2$                                |
|---------------------|------------------------------------------------------------|
| Pixel size          | $50	imes 50\ \mu\text{m}^2$                                |
| High hit rate       | 3 GHz/cm <sup>2</sup> (vs. FEI4: 400 MHz/cm <sup>2</sup> ) |
| High trigger rate   | 1 MHz with 12.8 μs latency                                 |
| High data rate      | up to 5.12 Gbit/s per chip                                 |
| Low threshold       | $\sim 600\mathrm{e}$                                       |
| Radiation tolerance | 500 Mrad                                                   |
| Low power           | $\sim$ 4 $\mu$ A/pixel (analog/digital)                    |





ITkPixV1 chip on Single Chip Card (SCC) [3]

## Software for Pixel RD53a/b readout

- Operating Systems:
  - CentOS7: 64bit for ZCU102, 32bit for RCE gen-3 (COB and HSIO2)
  - Arch Linux(abandoning), RTEMS without SMP support (abandoned)
  - Ubuntu LTS might be an option for next version ARM OS
- RCE Software Development Kit
  - host OS: CentOS7 x86/64
  - format and install root file system to SD card
  - Crosstool-ng to generate cross compilers for ARM and AARCH64



| Application Software                    |  |                    |  |  |
|-----------------------------------------|--|--------------------|--|--|
| Generic Drivers & SLAC Support Software |  |                    |  |  |
| Firmware / Software Interface           |  |                    |  |  |
| SLAC Provided Firmware Modules          |  |                    |  |  |
| Application Firmware                    |  | Peripheral Hardwar |  |  |
| SLAC Modules Application<br>Modules     |  | Ō                  |  |  |
| External Interfaces                     |  |                    |  |  |

#### What is RCE(Reconfigurable Cluster Element)





https://ieeexplore.ieee.org/document/7431254

### Old Gen RCE SoC Readout

- Reconfigurable Cluster Element (RCE) is a SLAC R&D project for a generic SoC DAQ/trigger system, starting from 2007
  - CPU and FPGA fabric within a same chip for a compact data passage
  - tight coupling between firmware and software
- Gen 3 (2013) based on Zynq-7000 SoC
  - **COB** (Cluster-On-Board): ATCA blade with custom RTM specialized for user applications, up to 4 DPMs and 1 DTM
  - HSIO2: standalone bench-top readout board, 1 DTM
  - RCE mezzanine card:
    - **DPM** (Data Processing Modules) and **DTM** (Data Transmission Module, network connectivity)
    - Xilinx Zynq-based SoC, multi-core ARM CPU, GB of memory, DMA interface to FPGA fabric, Versatile high/low-speed I/O interface







#### Rd53 chip calibration Performance Optimization

- only aim for Rd53 pixel chip
  - utilizing all the features of Rd53 for best performance
    - event header/ID in data stream => could async Tx and Rx during digital scan
    - high I/O throughput
  - pixel chip digital scan: 5.0 sec with vanilla ITk SW on RCE => 1.2sec after modification
  - ARM SIMD(single instruction multiple data)
    - improves CPU/software efficiency
    - Similarly, SSE for INTEL CPU
    - speed up raw data decoding by a factor of ~3
    - digital scan takes 0.7 sec with SIMD
    - (\*raw Cmd+Data transferring needs ~0.4sec, limited by the chip I/O speed)
    - other types of scan got similar improvements





#### RCE for Pixel RD53a/b Testbeam



https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=242295409



ATLAS ITkPixV1 (Rd53b)

#### 10.2 Aurora and RD53B Data





**Figure 59:** Examples of encoded stream data with no Aurora block boundaries shown: (a) one hit quarter-core each in two ccols (note last hit bit is set for both), (b) two separated quarter-cores hit in same ccol (last hit set only for second), (c) two neighbor quarter-cores hit in same ccol, (d) one hit quarter-core each in two different events, (e) an empty event followed by an event with one hit quarter-core, followed by another event. A color key to the field types is shown at the bottom. The number of bits in each field is shown in square brackets.

#### http://cds.cern.ch/record/2665301