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Is the local Lorentz invariance of general relativity implemented
by gauge bosons that have their own Yang-Mills-like action?
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General relativity with fermions has two independent symmetries: general coordinate invariance and
local Lorentz invariance. General coordinate invariance is implemented by the Levi-Civita connection and
by Cartan’s tetrads both of which have as their action the Einstein-Hilbert action. It is suggested here that
local Lorentz invariance is implemented not by a combination of the Levi-Civita connection and Cartan’s
tetrads known as the spin connection, but by independent Lorentz bosons L?; that gauge the Lorentz
group, that couple to fermions like Yang-Mills fields, and that have their own Yang-Mills-like action.
Because the Lorentz bosons couple to fermion number and not to mass, they generate a static potential that
violates the weak equivalence principle. If a Higgs mechanism makes them massive, then the static
potential also violates the inverse-square law. Experiments put upper bounds on the strength of such a
potential for masses m; < 20 eV. These upper limits imply that Lorentz bosons, if they exist, are nearly

stable and contribute to dark matter.

DOI: 10.1103/PhysRevD.102.065011

I. INTRODUCTION

General relativity with fermions has two independent
symmetries: general coordinate invariance and local
Lorentz invariance. General coordinate invariance is the
well-known, defining symmetry of general relativity. It acts
on coordinates and on the world indexes of tensors but
leaves Dirac and Lorentz indexes unchanged. It is imple-
mented by the Levi-Civita connection and by Cartan’s
tetrads.

Local Lorentz invariance is a quite different symmetry. It
acts on Dirac and Lorentz indexes but leaves coordinates
and world indexes unchanged. In standard formulations
[1-5], the derivative of a Dirac field is made covariant
(0; + w;)y by a combination of the Levi-Civita connection
I'V/;; and Cartan’s tetrads ¢ ; known as the spin connection

1
_ b
wi*—gw“ i[ya»yb] (1)
in which

w®; = ¢ P+ 0, (2)

a and b are Lorentz indexes, and i, j, k are world indexes.

Because it acts on Lorentz and Dirac indexes but leaves
world indexes and coordinates unchanged, local Lorentz

invariance is more like an internal symmetry than like
general coordinate invariance. In theories with local
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Lorentz invariance and internal symmetry, the covariant
derivative D; of a vector of Dirac fields y has the spin
connection @; and a matrix A; of Yang-Mills fields side
by side

Dy = (0; + w; + A;)y. (3)

Just as the Yang-Mills connection A; is a linear combina-
tion A; = —it*AY of the matrices t* that generate the
internal symmetry group, so too the spin connection ®;
is a linear combination w; = — g w*’;[y,.7,] of the matrices
—i%[va.7s) that generate the Lorentz group.

So I ask: Does the independent symmetry of local
Lorentz invariance have its own, independent gauge field

1
Li=- gLahi[J’w 75) (4)

with its own field strength F; = [0; + L;, 0, + L;] and
Yang-Mills-like action

1 o
S, = e / Tr(F} F'*)\/g d*x? (5)

and should the Dirac covariant derivative be

1
Dy = (0,- - gL“”i[Va, n]) W (6)

instead of the standard form (1)—(3)
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If so, then the Lorentz bosons L; couple to fermion
number and not to mass and lead to a Yukawa potential that
violates the inverse-square law and the weak-equivalence
principle.

Experiments [6—28] have set upper limits on the strength
of such Yukawa potentials for Lorentz bosons of mass less
than 20 eV. These upper limits imply that Lorentz bosons, if
they exist, are nearly stable and contribute to dark matter.
Whether fermions couple to Lorentz bosons L; with their
own action S; or to the spin connection w; is an open
experimental question.

This paper outlines a version of general relativity with
fermions in which the six vector bosons of the spin
connection @, are replaced by six vector bosons L%,
that gauge the Lorentz group and have their own Yang-
Mills-like action. The theory is invariant under general
coordinate transformations and independently under local
Lorentz transformations.

Section II sketches the traditional way of including
fermions in a theory of general relativity. Section III
describes the local Lorentz invariance of a theory with
Lorentz bosons. Section IV says why general-coordinate
invariance and local-Lorentz invariance are independent
symmetries. Section V describes the Yang-Mills-like action
of the gauge fields L*; of the Lorentz group. Sections VI
and VII suggest ways to make gauge theory and general
relativity more similar to each other. Section VIII discusses
Higgs mechanisms that may give masses to the gauge
bosons L%; of the Lorentz group. Section IX describes
some of the constraints that experimental tests [6—28] of the
inverse-square law and of the weak equivalence principle
place upon the proposed theory. Section X discusses the
stability and masses of L bosons and suggests that they may
be part or all of dark matter. Section XI summarizes
the paper.

II. GENERAL RELATIVITY WITH FERMIONS

A century ago, Einstein described gravity by the action

dx ikp 4
St = 1or | RVI P = oz [ dRavi a9

in which G = 1/m3 is Newton’s constant, the metric is
(= +,+,+), letters from the middle of the alphabet are
world indexes, g = | detg;| is the absolute value of the
determinant of the space-time metric, and the Ricci tensor
R;; = R’ is the trace of the Riemann tensor

Riipp =0, — OV gy + TV ) Ty = T, T (9)

in which

Ik, = %gkj(afgji +0i9;0 — 0;9i0) =T (10)
is the Levi-Civita connection which makes the covariant
derivative of the metric vanish [29].

The standard action of general relativity with fermions is
the sum of the Einstein-Hilbert action (8) and the action of
matter fields including the Dirac action

/—1/7[}’“02(31' + w; + A)w/g d*x. (11)

In what follows, it is proposed to replace the spin
connection w; in the standard Dirac action (11) with an
independent gauge field L; = —3L,[y,.y;] that has its
own action (5) and to use

SD:/—

as the action of a Dirac field. This change and reflects the
independence of general coordinate invariance and local
Lorentz invariance and makes general relativity and quan-
tum field theory somewhat more similar.

“h(0; +Li+ADwy/g dix  (12)

III. LOCAL LORENTZ INVARIANCE

The Einstein action (8) has a trivial symmetry under local
Lorentz transformations that act on Lorentz indexes but
leave world indexes and coordinates unchanged. This
symmetry becomes apparent when Cartan’s tetrads c¢;
and c?, are used to write the metric g; in a form

¢ i(X) e’ (%) (13)
that is unchanged by local Lorentz transformations
ci(x) = A%y (x)e”i(x). (14)

The Levi-Civita connection (10) and the action (8) are
defined in terms of the metric and so are also invariant
under local Lorentz transformations.

More importantly, the two Dirac actions (11) and (12)
have a nontrivial symmetry under local Lorentz trans-
formations. Under such a local Lorentz transformation, a
Dirac field transforms under the (3.0) @ (0,3) representa-
tion D(A) of the Lorentz group with no change in its
coordinates x

gix(x) =

Wa(x) = Dy (A(x)Jw(x). (15)

The Lorentz-boson matrix L; =
0; + L; a covariant derivative

—%L[y,.v») makes

O+ L= DY A)D, + L)D(N).  (16)
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In more detail with A = A(x), the matrix L; transforms as

L, = D' (A)9;D(A) + D™'(A)L;D(A)

= D (A)OD(A) = ¢ D™ (AL [y, 1 ]D(A)

1
=D (A)O:D(A) - gLabiAacAbd[yc, 7d) (17)
in which A, = A~'¢,. Since

Tr([r". 7"][ye. va]) = 16(598% — 545%). (18)

its components transform as

1
L/abl_ — _ETI'(L:b/a’ }/b])

= ASALLE — STH(DT (MDA /). (19
Under an infinitesimal transformation
A=I1+212 and D) =1 —%Aab[y“,yb], (20)
the Lorentz bosons transform as
L@, = Leb, 4 L0 )@ + Lad )b + 0,09, (21)

The components of the spin connection obey similar
equations, and the conventional Dirac action (11) also is
invariant under local Lorentz transformations.

Local Lorentz transformations operate on the Lorentz
indexes a, b, c, ... of the tetrads, of the spin connection
w;, and of the gamma matrices y*[y;, 7., and also on
the Dirac indexes a, 3, y of the gamma matrices and of the
Dirac fields y,y, but not upon the world index i or the
spacetime coordinates x. In this sense, the invariance of
Dirac’s action Sp under local Lorentz transformations is
like an internal symmetry.

IV. LOCAL LORENTZ INVARIANCE AND
INVARIANCE UNDER GENERAL COORDINATE
TRANSFORMATIONS ARE INDEPENDENT
SYMMETRIES

The Dirac action Sp is invariant both under a local
Lorentz transformation A(x) and under a general coordi-
nate transformation x — x’. Under a local Lorentz trans-
formation A(x), the coordinates are unchanged, x’ = x, and
the fields transform as

Aj(x) = Ai(x) (22)

in which A.%(x) = A='¢.. Under a general coordinate
transformation, the fields transform as

Wo(X') = wu(x)

Oxk
() = S5y (x)
Ia ok a
L hi(x/) = ax/i bk(x)
Oxk
M) = S5 A (). (23)

The two transformations, y,(x) = D3 (A(x))yy(x) and
x — x/, are different and independent; the coordinates x’
and A(x)x are unrelated.

Every conventional, local Lorentz transformation is a
general coordinate transformation, so one might be tempted
to imagine that every general coordinate transformation is a
conventional, local Lorentz transformation. But one can see
that this is not the case by comparing the infinitesimal form
of a general coordinate transformation

8x/i

d 1
* Ox*

dx* (24)

which has 16 generators with that of a conventional, local
Lorentz transformation

dx’“ = A“bdxb = dx? —+ (€r . Rab +€b . B”b)dxb (25)

which has only 6 [30].

Special relativity offers another temptation. In special
relativity, global Lorentz transformations A act on the
spacetime coordinates and on the indexes of a Dirac field

X = A9, xP

Wa(x') = Dy (A)wy(Ax). (26)
This global Lorentz transformation leaves the specially
relativistic Dirac action density unchanged
=iy Yy O] = =iy D7y D Oy

=—iy Y’ Dy*D' A, Oy

=—iy Ty NN O

=—iy Yy 5,0y = —iw Yy Oy, (27)
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But in general relativity with fermions, Cartan’s tetrads
¢l allow the action to be invariant under a local Lorentz
transformation without a corresponding general coordinate
transformation. The matrix D;(A(x)) represents a local
Lorentz transformation and acts (15) on the spinor indexes
of the Dirac field but not on its spacetime coordinates.
Since

D]/aD_l _ Aalaya’

and Dy,D™' = A"y, (28)

a local Lorentz transformation (17) does not change
Dy*D7''l = yP AN el = yPS5cl = Pl (29)

But the effect of a local Lorentz transformation (17) on the
Lorentz matrix L; is

D9, +L)D™' -9, = %L’“" Dlya,7,)D™
— —éAC“AdbL“diD[n,n]D‘l
_ éAflaCAfldecdiAeaAfb[ye’ 7f]
- _%Lcdi[h, val =L (30)
so that
D(9; +L)D™" =, + L. (31)

A local Lorentz transformation therefore leaves the Dirac
action density invariant

[~iw"y%r?ci(0; + L]
= —iy"'D1Y0ycli(0; + L)) D 'y
= —iy'DYOyciDID(0; + L) Dy
= —iy"y'DyciD™(9; + L)y
= —iy "yl (9; + Loy (32)

The symmetry under local Lorentz transformations is
independent of the symmetry under general coordinate
transformations. They are independent symmetries.

V. ACTION OF THE GAUGE FIELDS L;

Since local Lorentz symmetry is like an internal sym-
metry, its gauge fields L; = — % L[y, 7] should have an
action like that of a Yang-Mills field

S.= -y [ T GEx ()

4f2

in which

Fik = [a, +Li’8k+Lk]' (34)

In terms of the gamma matrices

= —i : = —i . ,
4 1 0 4 —oi 0

10
d /= : 35
and y (o _1> (35)

the commutators in L; =
c=1,2,3,

— 2L [y 4. v») are for spatial a, b,

[Var 7] = 2i€ape0l and  [yg.7,] = —206°y°.  (36)

So setting

rt; = §€gbcLbC; and b“; = L, (37)

the matrix of gauge fields L; is

1 1
—*Labi[}’wyh} = -l _ibi +0 7’5- (38)

Li: 3 Er,--O'I

Its field strength (34) is

Fiy = [0; + L, O + Ly

1
:—li(airk—akrﬂrr,- er_bi ka)’O'I

1
—5(8ibk—8kb[+rixbk—l—b[xrk)-ayS, (39)

and its Yang-Mills-like action density (33) is
1 t ik
4—f2Tr(F LF)

= 4f2[(ark

Ok = OFF 41 x rF — b x b¥)
+ (a,‘bk —akb,» +r; ka +bt er)
- (O'b* — O*b' + 1 x b* + b’ x 1)). (40)

SL:_

Opri +ri xr,—b; xby)

VI. MAKING GENERAL RELATIVITY MORE
SIMILAR TO GAUGE THEORY

There are three reasons to define the covariant derivative
of a Dirac field in terms of Lorentz bosons

1
Li=- gLabi[}/av }’b} (41)

with their own action (33) as
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Dy = (0; +L; + Ay (42)

rather than in terms of the spin connection (1)

w; = =<0y, 1)

(c“jcbkrjk,- + Cakaicbk) [Yav Vb] (43)

0| — OO —

as (3)
(0; +o; +A)y. (44)

One reason is that the symmetry of local Lorentz
transformations is independent of the symmetry of general
coordinate transformations. So local Lorentz invariance
should have its own gauge field L; and action S; inde-
pendent of the tetrads and the Levi-Civita connection of
general coordinate transformations.

A second reason to prefer the Lorentz connection L; to
the spin connection w; is that the L-boson covariant
derivative

<8i - %Labi[}’m}’bovf (45)

is simpler than the spin-connection covariant derivative

1 )
(ai ~3 (c*;PM T g + ¢*0:¢™) [y 4, 7b]> w. (46)

A third reason is that using the Lorentz connection (41),
the Dirac covariant derivative (42), and the action (33)
for the Lorentz connection, makes general relativity with
fermions more similar to the gauge theories of the stan-
dard model.

VII. MAKING GAUGE THEORY MORE
SIMILAR TO GENERAL RELATIVITY

Under a local Lorentz transformation, the spin connec-
tion w; changes more naturally, more automatically than
does the Lorentz connection L;. The automatic feature of
the spin connection is that its definition (2) implies that
under infinitesimal (20) and finite local Lorentz trans-
formations it transforms as

w/abi — a)ahi + waiica + wudl_/ldh + ailah (47)
and as
w’“bi = ACaAdwadi + Acaal‘ACb. (48)

The terms 9,4 and A,“9; A’ occur automatically without
the need to put in by hand a term like D~!(A)9;D(A).

Terms like D™'(A)9;D(A) are a common feature of
gauge theories whether Abelian or non-Abelian. We can
make them occur automatically in local Lorentz trans-
formations if we add to the Lorentz connection L%; the
term u®,0;u’® in which the four Lorentz 4-vectors u*(x)
obey the condition

W =, (49)

and a = 0, 1, 2, 3 is a label, not an index. It follows then
from this condition (49) on the quartet of vectors u** that
the augmented Lorentz connection L,

Lab

ab = Lubi + uaaaiuba (50)
automatically changes under a local Lorentz transformation
A=A to

Llah

new i

- AcaAdbLCdi + Acaucaai<Adbuda)
— AcaAdb (LCdi + ucaaiuda) + ucaudaAcaaiAdb
— ACaAdchd . nCdACaaiAdb

new i
:AcaAdchd -+Ac“8,-ACb

new i
— AcaAdchd + Aflacal_Acb (51)

new i
without the need to explicitly add the last term A~'%.9;A”
by hand.

In matrix form, the condition (49) is the requirement

uaan(zﬂubﬁ = ﬂab (52)

that the matrix formed by the quartet of vectors u“* be a
Lorentz transformation

XU NGpuyy, = x,0Cyp. (53)

The augmentation of the Lorentz connection L; —
L . by the addition of the term u,0;u"*, which is similar
to the tetrad term c%;9;c’* of the spin connection (2),
makes its change (51) under local Lorentz transformations
as automatic as that (48) of the spin connection.

The use of a more automatic connection makes gauge
theory more similar to general relativity with fermions.

We can extend the use of such terms to internal
symmetries and so make the inhomogeneous terms appear
automatically rather than by hand or by fiat. For instance,
we can augment the Abelian connection A; to

Anewi(x) = Ai(x) + e—iqﬁ(x)aieiqﬁ(x) (54)
in which ¢(x) is an arbitrary phase. A U(1) transformation

e_i¢(x) —_ e_i(g(x)""‘ﬁ(x)) and W(x) — e_ie(x)w(x) (55)
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would then change the covariant derivative (0; + Aewi W
to
[(al +Anewi)l//]/ = (az +Az + e_i<9+(/))aiei(9+¢))e_iaw
= e_ié)(ai - 1819+Al + 18,9-1- e_i‘/’al-ei‘/’)l//
=e (0, +A; +e 0,6 )y

= e_m(ai +Anewi)l//' (56)

Similarly, we can augment the non-Abelian connection
A; = —it"A? for SU(n) to

Anewi(x) = Ai(x) + uaﬂ(x)aiuzy(x) (57)
in which the n n-vectors u,, are orthonormal
uﬁau;a = 5ﬂ}’ (58)
An SU(n) transformation
A= gAig',  u-gu, and y— gy (59)

would then change the covariant derivative (0; + Aoy ;)W
to

[(0; + Aew )W = (0; + gAig" + gud;(u' g"))gw
9(0i + 9" 0ig + Ai + (0ig")uu' g + ud;u® )y
9(0i + 9" 0ig + Ai + (0ig")g + udu® )y
= g(0; + A; + udu" )y = g(0; + Apew i)W

(60)

VIII. POSSIBLE HIGGS MECHANISMS

The actions §; and Sp (5) & (12) leave the gauge bosons
L massless, but a Higgs mechanism is possible. An
interaction with a field »“ that is a scalar under general
coordinate transformations but a vector under local Lorentz
transformations has as its covariant derivative
D,-v“ = 6,»1)“ + LabiUb. (61)
If the time component v has a nonzero mean value in the
vacuum (0[2°]0) # 0, then the scalar —D;v* D', contains a
mass term
_LaOivOLaOiUO — —LaOiUOLaOi’UO (62)
that makes the boost vector bosons b*; = L*°; massive but
leaves the rotational vector bosons r*; = %€WL'",' mass-
less. On the other hand, if the spatial components have a
nonzero mean value, (0|7|0) # 0, then the mass term is
_LasivsLasi,Us _ _Ls’sivsLs’sivs + Losi’USLOSi’US.

(63)

Adding the two mass terms (62) and (63), we find

_LaOithaOivb — LOsi,UaLOA'iva _ Lx’xi,u.\'Ls’xivS (64)
which makes all six gauge bosons massive as long as the
mean value is timelike

(0]vv,4]0) <O (65)
and at least two spatial components (0|v*|0) # 0 have
nonzero mean values in the vacuum. This condition holds
in all Lorentz frames if three vectors v?!, v*2, and v* have
different timelike mean values in the vacuum.

In the vacuum of flat space, tetrads have mean values that
are Lorentz transforms of c¢{ = 6¢ and that produce the
Minkowski metric (13)

ik = 5?’7,”)52 = Nik- (66)
So it is tempting to look for a Higgs mechanism that uses

the covariant derivatives D,c?; of the tetrads. For IV;, = 0
and ¢, = 6{, the term

1 . 1 .
) mi(D'c,*)Dic? = = 3 miLg" ¢, L ey

1 .
— 2 b
= ——mj7L,,'L?,;

; (67)

makes the rotational bosons r*; = %esmL’“i massive but
makes the boost bosons b*; = L*°; tachyons. If weakly
coupled tachyons are unacceptable, then the Higgs mecha-
nism (61)—(64) that uses three world-scalar Lorentz vectors
with different timelike mean values in the vacuum v{, v9,
v$ is a more plausible way to make the gauge bosons L“;
massive.

IX. TESTS OF THE INVERSE-SQUARE LAW

In the static limit, the exchange of six Lorentz bosons
L of mass m; would imply that two macroscopic bodies
of F and F’ fermions separated by a distance r would
contribute to the energy a static Yukawa potential

_3FF L

Vi(r) =25 (68)
This potential is positive and repulsive (between fermions
and between antifermions) because the L’s are vector
bosons. It violates the weak equivalence principle because
it depends upon the number F of fermions (minus the
number of antifermions) as F' = 3B + L and not upon their

masses. The potential V; (r) changes Newton’s potential to

!
Va(r) = —G@ (1+ ae~/?) (69)
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FIG. 1. Upper limits (95% confidence) on the strength |ay,| of

Yukawa potentials that violate the inverse-square law at distances
1078 <1 <2x107* m. (Fig. 4 of Chen et al. [7]).

in which the coupling strength a is

_3FF'f* _ 3FF'mgf?
2xGmm’

2rmm’ (70)
and the length A is A = Aa/cm;y. Couplings a~ 1 are of
gravitational strength. Experiments [6-28] that test the
inverse-square law and the weak equivalence principle have
put upper limits on the strength |a| of the coupling for a
wide range of lengths 1078 < 1 < 10> m and masses
2x 10720 < m; <20eV.

Experiments that tested the inverse-square law at very
short distances, between 10 nm and 3 mm, were done with
masses of gold [6], of gold and silicon [7], of platinum [8],
and of tungsten [9]. For a mass m of N atoms of gold which
has F,, = 670 fermions (quarks and electrons) in each
atom of mass my, = 196.966 u, the ratio Fmp/m that
appears in the coupling a (70) is

NFAumP . FAump o 670mp

_ 19
= 106066, = 458 x 10V (71)

NmAu MAy

So the coupling strength is a,, = —9.490 x 103 f? for
gold. An atom of silicon has Fg; = 98 fermions and a mass
of mg =28.085u, so Fgmp/mg; =4.573 and ag =
—9.988 x 10°® 2. Platinum has Fp = 663 and mp, =
195.084 u, so ap, = —9.474 x 103 f2. Tungsten has Fy =
626 and my, = 183.84 u, so ay = —9.510 x 103 f2. For
such test masses, f2 ~ |a| x 107,

The Riverside group [6] placed on the strength |a,,| an
upper limit (95% confidence) that drops from |ay,| < 10!
to |aa,| < 10'° as the length 4 rises from 107 m to
4 x 1078 m. The IUPUI group [7] put an upper limit
(95% confidence) on the strength |a,.g;| that drops from
|aasi| <100 to |aaysi| < 10° as the length A rises from

106 T T 1T T T T TTTTT I T T T TTTTT
10° - = IZUUF;gl EXCLUDED REGION_|
modaull
Stanford 2003,
104 2005, & 2008 -
108 | Colorado 2003 —
Eot-Wash 2020
_10% Est-Wash 2007
=] dilaton Eot-Wash 2004
10" - l _
0 |
10 HUST 2017
2016
10-1 | & 2020
10_2 — dark energy scale —#
10'3 1 L1111 II 1 1 L1 11 I 1 1 L1111
2 5 5 2 5 2 5 3
10 10 10

A (m)

FIG. 2. Upper limits (95% confidence) on the strength |ap| of
Yukawa potentials that violate the inverse-square law at sub-mm
distances [8-20]. (Fig. 5(b) of Lee et al. [8]).

4x 1078 m to 8 x 107® m. These results of the Riverside
and IUIPUI groups are plotted in Fig. 1 from Chen
et al. [7].

Other short-distance experiments [8,9,11-20,26-28]
have tested the inverse-square law at the slightly longer
distances of 2 x 107% < A < 3 x 10~ m. The Washington
group [8] used test masses of platinum. The HUST, Sun
Yat-sen, Jiangxi Normal, HUAT, and Wuhan Polytechnique
groups [9] used test masses of tungsten. The upper limits
(95% confidence) on the strength |a| are shown for
platinum in Fig. 2 from Lee et al. [8] and for tungsten
in Fig. 3 from Tan et al. [9]. The upper limit on the strength
|a| falls from |a| <10° at A~2x 107 m to |a| < 10* at

10° . .
105 IUPUT 16 Excluded Region
10 Stanford 08 ]
10° } Eot-Wash 07 i

Moduli
10 F Colorado 03 4

E , Dilaton
10" E
10° } HUST 07-16
This work

107 F TRadion
1072 F Dark energy scale —»
1073 3 \ | Axion_

107 10" 107

A (m)
FIG. 3. Upper limits (95% confidence) on the strength |ayw| of

Yukawa potentials that violate the inverse-square law at mm and
sub-mm distances [7,9,11,14,15,17-20,26-28]. Light lines are
theory [13,22] (Fig. 6 of Tan et al. [9]).
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FIG. 4. Upper limits (95% confidence) on the strength |a| of
Yukawa violations of the inverse-square law at large distances
1072 < A < 10 m [13,20,23,24,31] (Fig. 10 of Adelberger
et al. [13]).

A~8x107° m and then from |a| <10 at 1~ 107> m
to |af<1 at A~4x10”° m and to |a| <1073 at
A~2x1073 m.

Other groups [13,20-25,28,31] have tested the inverse-
square law over a huge range of longer distances, 107> <
A <3 x 10" m. In 2012 the HUST group [28] put an upper
limit of || <1073 for 7 x 107* < 1 < 5 x 107> m, while
in 1985 the Irvine group [20] put an upper limit of |a| <
1073 for lengths 7 x 1073 < A < 107" m.

Fischbach and Talmadge [31] and Adelberger et al. [13]
have reported tests of the inverse-square law for distances
in the range 1072 <1< 10 m [13,20,23,24,31]. As shown
in Fig. 4 from Adelberger et al. [13], the upper limit lies
between |a| <3 x 107 and |a| <2 x 1073 for 1072 < A <
10* m but drops from |a| <107 to |a| <1070 as the
length increases from 10* to 10% m. The upper limit is
about |a| <5x 107 on planetary scales 100 < 1 <
5% 10" m.

The Washington group have used torsion-balance experi-
ments to look for Yukawa potentials that violate the weak
equivalence principle in the range of distances 0.3 < 1 <
10° m [13]. They have put upper limits (95% confidence)
on the strength |a| of the coupling to B, Z, and N =B — L
but not explicitly on the coupling to fermion number
F =3B+ L. For B, their upper limit runs from |a| <
107 at 107! m to |a| <6 x 1078 at 7 x 10° m and then
falls to |a| < 1071° for 107 < 4 < 10'* m as shown by the
dashed lines in Fig. 5 from Bergé et al. [10]. For Z and N,
their upper limit runs from |a| <107 at 10! m to |a| <
6 x 107 at 10° m and then falls to |a| <2 x 107! for
107 < 4 < 10° m [13].

10
S Excluded region
105} N
A
106} .y
10-7 L b -
< 108
oo 9=E
-10
10 — MICROSCOPE
qfl - Eot-Wash08
1077 . Eot-washgo
- LLR
10

-12 n T L L L L . L L
101 10° 10! 102 10% 10* 10° 10° 107 10% 10°
A [m]

FIG. 5. Upper limits (95% confidence) on the strength || of
Yukawa potentials that violate the weak equivalence principle at
long distances [10,13,20,21,23,24] (Fig. 1 of Bergé et al. [10]).

More recent satellite measurements by the MICRO-
SCOPE mission have lowered the upper limit on the
strength |a| of Yukawa potentials that violate the weak
equivalence principle by about an order of magnitude for
107 < A < 10° m [10]. The upper limit for coupling to B is
la] £ 107" for 107 < 2 < 10° m as shown in Fig. 5 from
Bergé et al. [10]. Their limit for coupling to N is even
lower: |a| <4 x 10713 for 107 < A < 10° m [10].
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FIG. 6. The upper bound (95% confidence) on the strength |a|
of Yukawa potentials that violate the inverse-square law or the
weak equivalence principle at various distances A is the solid
dark-blue curve [6-28]. The region under the dotted green line
denotes L bosons with lifetimes greater than the age of the
universe for the case in which the fudge factor » = 1. The region
below that line and between the vertical dashed blue lines denotes
L bosons that are between 1 and 100% of dark matter. The thin
vertical gray solid line marks the wavelength of an L boson
whose mass is 2mg = 2.2 eV [32].
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Some of these important results [6-28] are summarized
in broad-brush fashion in Fig. 6. The upper bound
(95% confidence) on |a| is the solid dark-blue curve which
falls from 10" for A =7 x 108 mto 107! at A = 10° m.
The (4, |a|) region above this curve is excluded. Points in
the allowed region that are below the blue-green dotted line
correspond to L bosons with lifetimes longer than the age
of the universe. Those that also are between the vertical
dashed lines denote effectively stable L bosons whose
masses could account for between 1 and 100% of dark
matter.

X. LORENTZ BOSONS AS DARK MATTER

Analysis of the double galaxy cluster 1E0657-558 (the
“bullet cluster” at z = 0.296) suggests [33,34] that dark
matter interacts weakly, perhaps with gravitational strength
|a| ~ 1. As of now, there has been no accepted detection of
dark matter in a laboratory.

The experiments [6—28] sketched in Sec. X put no upper
limits on the mass m; = h/cA of L bosons and no lower
limits on their coupling |a|. The proposed L bosons are
electrically neutral. If their mass is heavy enough and if
their coupling is sufficiently weak, then they would be an
effectively stable part of dark matter.

Because they couple to fermion number and not to mass,
their coupling f? is much weaker than || by a factor related
to Avogadro’s number. For the metals (Au, Si, Pt, and W)
used in many of the experiments [6—28], the relation is

f2~|a| x 107%. (72)

Even for the highest upper limit |a| < 10'® shown in Fig. 6,
the coupling of the L bosons is only f> <107,

Because they interact so weakly, L bosons decay slowly.
The decay width of the Z boson is I'y = 3.7¢*m,c?/
4z =2.5 GeV, and its lifetime is 7, =/, =2.6 x
1073 5. The analog of the electromagnetic coupling
e?/4m ~1/137 for L bosons is f?/4m. In terms of f?
and |a| (72), the decay width of an L boson of mass m
is roughly

bf*myc*  blalmyc?
Az 4x

| Y x 107% (73)
in which b is a fudge factor, 0.1 < b < 10, that depends on
the decay channels. The L boson lifetime then is

h 8.3 x 1074 1.9 107

= :_7t
', b|a|mch[eV}s bla| myc*eV] °

(74)

in which 7, = 4.356 x 10'7 s is 13.8 billion years, the age
of the universe. An L boson of mass m; < (19/b|a|) MeV
is effectively stable in that its lifetime exceeds the
age of the universe. If the fudge factor b is taken to be

unity, then L bosons of wavelength 4 are effectively stable
for couplings

la] < (1.5 x 10'3) A[m] (75)

which is the dotted green line in Fig. 6. Points below it
denote effectively stable L bosons.

If the lightest fermion has mass mj;p s, then L bosons of
mass less than 2mygpeq Would be absolutely stable. The
dash-dotted gray vertical line in Fig. 6 is the wavelength

A =5.6 x 1077 m of twice the upper limit on the effective

mass of the electron neutrino, 2ml<,fff) [32].

The mass density of cold dark matter is pgy, =
(2.2414 £0.017) x 107" kgm™ [[35], col. 7, p. 15].
So if all of cold dark matter were made of L bosons of
mass my, then their number density would be

o Pedm _ 1.26 x 10° 3 (76)
Y mp T mpcfev)] '

To estimate the present number density of each kind of L
boson, I will assume that the L bosons are effectively stable
and have not interacted since they dropped out of equilib-
rium in the very early universe.

At temperatures k7 >> m;c> so high that the weakly
interacting L bosons were in thermal equilibrium, the
number density of each kind of the six L bosons is given
by the Planck distribution as

3¢B3)(KT)? 9.609 x 107T°

") ==ty (mK)?

(77)

In the limit of vanishing coupling |a| — 0, the number
n(t)a’(t) of L bosons within a fixed comoving box does
not change with time. So the number now n(ty)a*(t,) =
n(t) is the number at any earlier time multiplied by a*(¢)

n(ty) = n(1)a*(t). (78)

At very early times, we may approximate the integral for
the time as a function of the scale factor a as [36]

@) =5 [ &
HoJo /Qux* 4+ Q +Qx ' +Q,x2
zi/“ dx @ (79)
HyJo VQ, 2H,/Q,

The Hubble constant and the fraction Q, = 9.0824 x 107
then give us the scale-factor as

a(t) = \/2Hy\/Q,t = 2.04 x 10719\ /1[s].  (80)

If \V types of particles made up the radiation at very early
times, then the time and the temperature were related
by [37]
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3 2
VNIT? = ]62 = 325924 x 1020 K2 (81)
zGa,

in which a, is the radiation constant

2k

= o = 1-56577(5) x 1070 Tm K. (82)
&

ar

So in terms of the number density (77), the scale-factor
(80), and the time-temperature relation (81), the number
density is roughly

4.8 x 10°
= W

In the standard model, A = 126, but the actual number
relevant at high temperatures may be much higher. If we
assume that N = 4*, then N =3/* = 1/64, and the present
number density of each kind of L boson would be

n(ty) = n(1)a’ (1) m3, (83)

n(ty) = 7.5 x 10" m=3. (84)
Let us further assume that all six L bosons get the same
mass m; . In this case, if their mass density is not to exceed
the density of dark matter, then the inequality
6mn(ty) < pegm = 2.24 x 10727 kgm=  (85)
implies that the mass m; must be less than

m;, <4.9x 1073 kg = 2.8 eV/c2. (86)

The lifetime of an L boson (74) would then be

34
T > m X 106[0 (87)

which for bla| < 1.7 x 10° exceeds the age #, of the
universe. The range A; = h/myc of the corresponding
Yukawa potential is

AL >45x107 m. (88)

Points (4, |a|) below the dotted green line in Fig. 6 and
between its vertical dashed blue-green lines denote L
bosons constituting between 1 and 100% of the dark
matter. The upper limit on the effective mass of the electron

neutrino is m,(/fff) < 1.1 eV [32]. The thin gray vertical line
eff

labels L bosons of mass m; = 2mj, .

XI. CONCLUSIONS

General relativity with fermions has two independent
symmetries: general coordinate invariance and local
Lorentz invariance. General general coordinate invariance

acts on coordinates and on the world indexes of tensors but
leaves Dirac and Lorentz indexes unchanged. Local
Lorentz invariance acts on Dirac and Lorentz indexes
but leaves world indexes and coordinates unchanged. It
acts like an internal symmetry.

General coordinate invariance is implemented by the
Levi-Civita connection I'/; and by Cartan’s tetrads ¢¢;. In
the standard formulation of general relativity with fer-
mions, local Lorentz invariance is implemented by the
same fields in a combination called the spin connection
w®; = ¢4 ;P + 9 0;cPt. These fields all have the
same action, the Einstein-Hilbert action R.

Because local Lorentz invariance is different from and
independent of general coordinate invariance, it is sug-
gested in this paper that local Lorentz invariance is
implemented by different and independent fields L%, that
gauge the Lorentz group and that have their own Yang-
Mills-like action.

The replacement of the spin connection with Lorentz
bosons moves general relativity closer to gauge theory and
simplifies the standard covariant derivative

1 L i
(ai ~3 (ijc°krjki + ¢t 0;¢) [y, }’c}>l// (89)

to

<5i - éL‘”’ ilYa> n]) 78 (90)

Whether the Dirac action has the spin-connection form (89)
or the Lorentz-boson form (90) is an experimental question.
Because the proposed action (12) couples the gauge
fields L, to fermion number and not to mass, it violates
the weak equivalence principle. It also leads to a Yukawa
potential (68) that violates Newton’s inverse-square law.
Experiments [6—28] have put upper limits on the strength
|a| of the Yukawa potentials (69) that violate the inverse-
square law and the weak equivalence principle for distances
1078 < 1 < 10° m. The upper limit ranges from |a| < 10"
at A=10"%m to |a| < 10® at 1 =107 m and to |a| <
107" at A = 10° m. There are no experimental lower limits
on the coupling at any distance, so L bosons could have
lifetimes that exceed the age of the universe. There are no
experimental upper limits on the masses of L bosons. Long
lived, massive, weakly interacting, neutral L bosons would
contribute to dark matter. From the obvious requirement
that they could make up all of dark matter but not more, we
can infer a crude theoretical upper limit on their mass of
m; <2.8 eV/c? if all 6 are stable and have the same mass.
A contracting universe of fermions (or of antifermions)
would have more of a tendency to bounce with L bosons
than without them.
The discovery of a violation of the inverse-square law by
future experiments would not be enough to establish the
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existence of L bosons because the violation could be due to
the physics of a quite different theory.

If L bosons are discovered, physicists will decide how to
think about the force they mediate. The force might be
considered to be gravitational because it arises in a theory
that is a modest and natural extension of general relativity.
But the force is not carried by gravitons. It is carried by L
bosons, and they implement a symmetry, local Lorentz

invariance, that is independent of general coordinate
invariance. So the force is new and might be called a
Lorentz force.

ACKNOWLEDGMENTS

I am grateful to E. Adelberger, R. Allahverdi, D. Krause,
E. Fischbach, and A. Zee for helpful emails.

[1] R. Utiyama, Invariant theoretical interpretation of interac-
tion, Phys. Rev. 101, 1597 (1956).

[2] T. W.B. Kibble, Lorentz invariance and the gravitational
field, J. Math. Phys. (N.Y.) 2, 212 (1961).

[3] S. Weinberg, Gravitation and Cosmology (John Wiley and
Sons, New York, 1972).

[4] S. Deser and C. J. Isham, Canonical vierbein form of general
relativity, Phys. Rev. D 14, 2505 (1976).

[5] L.E. Parker and D. Toms, Quantum Field Theory in
Curved Spacetime, Cambridge Monographs on Mathemati-
cal Physics (Cambridge University Press, Cambridge,
England, 2009).

[6] B. W. Harris, F. Chen, and U. Mohideen, Precision meas-
urement of the Casimir force using gold surfaces, Phys. Rev.
A 62, 052109 (2000).

[7] Y.-J. Chen, W. Tham, D. Krause, D. Lopez, E. Fischbach,
and R. Decca, Stronger Limits on Hypothetical Yukawa
Interactions in the 30-8000 nm Range, Phys. Rev. Lett. 116,
221102 (2016).

[8] J. Lee, E. Adelberger, T. Cook, S. Fleischer, and B. Heckel,
New Test of the Gravitational 1/r> Law at Separations down
to 52 ym, Phys. Rev. Lett. 124, 101101 (2020).

[9] W.-H. Tan et al., Improvement for Testing the Gravitational
Inverse-Square Law at the Submillimeter Range, Phys. Rev.
Lett. 124, 051301 (2020).

[10] J. Bergé, P. Brax, G. Métris, M. Pernot-Borras, P. Touboul,
and J.-P. Uzan, MICROSCOPE Mission: First Constraints
on the Violation of the Weak Equivalence Principle by a
Light Scalar Dilaton, Phys. Rev. Lett. 120, 141101 (2018).

[11] W.-H. Tan, S.-Q. Yang, C.-G. Shao, J. Li, A.-B. Du, B.-F.
Zhan, Q.-L. Wang, P.-S. Luo, L.-C. Tu, and J. Luo, New
Test of the Gravitational Inverse-Square Law at the Sub-
millimeter Range with Dual Modulation and Compensation,
Phys. Rev. Lett. 116, 131101 (2016).

[12] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, C.-G. Shao, L.-C. Tu,
W.-H. Tan, and J. Luo, Test of the Gravitational Inverse
Square Law at Millimeter Ranges, Phys. Rev. Lett. 108,
081101 (2012).

[13] E. Adelberger, J. Gundlach, B. Heckel, S. Hoedl, and
S. Schlamminger, Torsion balance experiments: A low-
energy frontier of particle physics, Prog. Part. Nucl. Phys.
62, 102 (2009).

[14] A. A. Geraci, S.J. Smullin, D. M. Weld, J. Chiaverini, and
A. Kapitulnik, Improved constraints on non-Newtonian
forces at 10 microns, Phys. Rev. D 78, 022002 (2008).

[15] D. Kapner, T. Cook, E. Adelberger, J. Gundlach, B.R.
Heckel, C. Hoyle, and H. Swanson, Tests of The Gravita-
tional Inverse-Square Law Below the Dark-Energy Length
Scale, Phys. Rev. Lett. 98, 021101 (2007).

[16] S. Smullin, A. Geraci, D. Weld, J. Chiaverini, S. P. Holmes,
and A. Kapitulnik, Constraints on Yukawa-type deviations
from Newtonian gravity at 20 microns, Phys. Rev. D 72,
122001 (2005); Erratum, Phys. Rev. D 72, 129901 (2005).

[17] C. Hoyle, D. Kapner, B.R. Heckel, E. Adelberger, J.
Gundlach, U. Schmidt, and H. Swanson, Sub-millimeter
tests of the gravitational inverse-square law, Phys. Rev. D
70, 042004 (2004).

[18] J. Long, H. Chan, A. Churnside, E. Gulbis, M. Varney, and
J. Price, Upper limits to submillimetre-range forces from
extra space-time dimensions, Nature (London) 421, 922
(2003).

[19] J. Chiaverini, S. Smullin, A. Geraci, D. Weld, and A.
Kapitulnik, New Experimental Constraints on Nonnewto-
nian Forces Below 100 Microns, Phys. Rev. Lett. 90,
151101 (2003).

[20] J. Hoskins, R. Newman, R. Spero, and J. Schultz, Exper-
imental tests of the gravitational inverse square law for mass
separations from 2-cm to 105-cm, Phys. Rev. D 32, 3084
(1985).

[21] J. G. Williams, S. G. Turyshev, and D. H. Boggs, Progress in
Lunar Laser Ranging Tests of Relativistic Gravity, Phys.
Rev. Lett. 93, 261101 (2004).

[22] E. Adelberger, B. R. Heckel, and A. Nelson, Tests of the
gravitational inverse square law, Annu. Rev. Nucl. Part. Sci.
53, 77 (2003).

[23] M. V. Moody and H. J. Paik, Gauss’s Law Test of Gravity at
Short Range, Phys. Rev. Lett. 70, 1195 (1993).

[24] R. Spero, J. K. Hoskins, R. Newman, J. Pellam, and J.
Schultz, Test of the Gravitational Inverse-Square Law at
Laboratory Distances, Phys. Rev. Lett. 44, 1645 (1980).

[25] S. Schlamminger, K. Y. Choi, T. A. Wagner, J. H. Gundlach,
and E.G. Adelberger, Test of the Equivalence Principle
Using a Rotating Torsion Balance, Phys. Rev. Lett. 100,
041101 (2008).

[26] R. Decca, D. Lopez, H. Chan, E. Fischbach, D. Krause, and
C. Jamell, Constraining New Forces in the Casimir Regime
Using the Isoelectronic Technique, Phys. Rev. Lett. 94,
240401 (2005).

[27] L.-C. Tu, S.-G. Guan, J. Luo, C.-G. Shao, and L.-X.
Liu, Null Test of Newtonian Inverse-Square Law at

065011-11


https://doi.org/10.1103/PhysRev.101.1597
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/PhysRevD.14.2505
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRevLett.116.221102
https://doi.org/10.1103/PhysRevLett.116.221102
https://doi.org/10.1103/PhysRevLett.124.101101
https://doi.org/10.1103/PhysRevLett.124.051301
https://doi.org/10.1103/PhysRevLett.124.051301
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.116.131101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1016/j.ppnp.2008.08.002
https://doi.org/10.1016/j.ppnp.2008.08.002
https://doi.org/10.1103/PhysRevD.78.022002
https://doi.org/10.1103/PhysRevLett.98.021101
https://doi.org/10.1103/PhysRevD.72.122001
https://doi.org/10.1103/PhysRevD.72.122001
https://doi.org/10.1103/PhysRevD.72.129901
https://doi.org/10.1103/PhysRevD.70.042004
https://doi.org/10.1103/PhysRevD.70.042004
https://doi.org/10.1038/nature01432
https://doi.org/10.1038/nature01432
https://doi.org/10.1103/PhysRevLett.90.151101
https://doi.org/10.1103/PhysRevLett.90.151101
https://doi.org/10.1103/PhysRevD.32.3084
https://doi.org/10.1103/PhysRevD.32.3084
https://doi.org/10.1103/PhysRevLett.93.261101
https://doi.org/10.1103/PhysRevLett.93.261101
https://doi.org/10.1146/annurev.nucl.53.041002.110503
https://doi.org/10.1146/annurev.nucl.53.041002.110503
https://doi.org/10.1103/PhysRevLett.70.1195
https://doi.org/10.1103/PhysRevLett.44.1645
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.94.240401
https://doi.org/10.1103/PhysRevLett.94.240401

KEVIN CAHILL

PHYS. REV. D 102, 065011 (2020)

Submillimeter Range with a Dual-Modulation Torsion
Pendulum, Phys. Rev. Lett. 98, 201101 (2007).

[28] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, C.-G. Shao, L.-C. Tu,
W.-H. Tan, and J. Luo, Test of the Gravitational Inverse
Square Law at Millimeter Ranges, Phys. Rev. Lett. 108,
081101 (2012).

[29] A.N.Bernal, B. Janssen, A. Jimenez-Cano, J. A. Orejuela, M.
Sanchez, and P. Sanchez-Moreno, On the (non-)uniqueness
of the Levi-Civita solution in the Einstein—Hilbert—Palatini
formalism, Phys. Lett. B 768, 280 (2017).

[30] K. Cahill, Physical Mathematics, 2nd ed. (Cambridge
University Press, Cambridge, England, 2019), pp. 435-
447, https://doi.org/10.1017/9781108555814.

[31] E. Fischbach and C.L. Talmadge, The Search for non-
Newtonian Gravity (Springer, New York, USA, 1999),
p- 305.

[32] P. Zyla, The review of particle physics, Prog. Theor. Exp.
Phys. 2020, 083CO01 (2020), Neutrino Masses, Mixing, and
Oscillations.

[33] D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch,
S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical
proof of the existence of dark matter, Astrophys. J. Lett.
648, L109 (2000).

[34] S. Weinberg, Cosmology (Oxford University Press,
New York, 2010), p. 186, https://doi.org/10.1007/s10714-
008-0728-z.

[35] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, arXiv:1807.06209.

[36] K. Cahill, Physical Mathematics, 2nd ed. (Cambridge
University Press, Cambridge, England, 2019), p. 518,
https://doi.org/10.1017/9781108555814.

[37] S. Weinberg, Cosmology (Oxford University Press, New York,
2010), p. 152, https://doi.org/10.1007/s10714-008-0728-z.

Correction: The text preceding Eq. (15) and the superscripts in
the third part of Eq. (23) contained typographical errors and have
been fixed.

065011-12


https://doi.org/10.1103/PhysRevLett.98.201101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1016/j.physletb.2017.03.001
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1086/508162
https://doi.org/10.1086/508162
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://arXiv.org/abs/1807.06209
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z

