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General relativity with fermions has two independent symmetries: general coordinate invariance and
local Lorentz invariance. General coordinate invariance is implemented by the Levi-Civita connection and
by Cartan’s tetrads both of which have as their action the Einstein-Hilbert action. It is suggested here that
local Lorentz invariance is implemented not by a combination of the Levi-Civita connection and Cartan’s
tetrads known as the spin connection, but by independent Lorentz bosons Lab

i that gauge the Lorentz
group, that couple to fermions like Yang-Mills fields, and that have their own Yang-Mills-like action.
Because the Lorentz bosons couple to fermion number and not to mass, they generate a static potential that
violates the weak equivalence principle. If a Higgs mechanism makes them massive, then the static
potential also violates the inverse-square law. Experiments put upper bounds on the strength of such a
potential for masses mL < 20 eV. These upper limits imply that Lorentz bosons, if they exist, are nearly
stable and contribute to dark matter.

DOI: 10.1103/PhysRevD.102.065011

I. INTRODUCTION

General relativity with fermions has two independent
symmetries: general coordinate invariance and local
Lorentz invariance. General coordinate invariance is the
well-known, defining symmetry of general relativity. It acts
on coordinates and on the world indexes of tensors but
leaves Dirac and Lorentz indexes unchanged. It is imple-
mented by the Levi-Civita connection and by Cartan’s
tetrads.
Local Lorentz invariance is a quite different symmetry. It

acts on Dirac and Lorentz indexes but leaves coordinates
and world indexes unchanged. In standard formulations
[1–5], the derivative of a Dirac field is made covariant
ð∂i þ ωiÞψ by a combination of the Levi-Civita connection
Γj

ki and Cartan’s tetrads caj known as the spin connection

ωi ¼ −
1

8
ωab

i½γa; γb� ð1Þ

in which

ωab
i ¼ cajcbkΓj

ki þ cak∂icbk; ð2Þ

a and b are Lorentz indexes, and i, j, k are world indexes.
Because it acts on Lorentz and Dirac indexes but leaves

world indexes and coordinates unchanged, local Lorentz
invariance is more like an internal symmetry than like
general coordinate invariance. In theories with local

Lorentz invariance and internal symmetry, the covariant
derivative Di of a vector of Dirac fields ψ has the spin
connection ωi and a matrix Ai of Yang-Mills fields side
by side

Diψ ¼ ð∂i þ ωi þ AiÞψ : ð3Þ

Just as the Yang-Mills connection Ai is a linear combina-
tion Ai ¼ −itαAα

i of the matrices tα that generate the
internal symmetry group, so too the spin connection ωi

is a linear combination ωi ¼ − 1
8
ωab

i½γa; γb� of the matrices
−i 1

4
½γa; γb� that generate the Lorentz group.

So I ask: Does the independent symmetry of local
Lorentz invariance have its own, independent gauge field

Li ¼ −
1

8
Lab

i½γa; γb� ð4Þ

with its own field strength Fik ¼ ½∂i þ Li; ∂k þ Lk� and
Yang-Mills-like action

SL ¼ −
1

4f2

Z
TrðF†

ikF
ikÞ ffiffiffi

g
p

d4x ? ð5Þ

and should the Dirac covariant derivative be

Diψ ¼
�
∂i −

1

8
Lab

i½γa; γb�
�
ψ ð6Þ

instead of the standard form (1)–(3)*cahill@unm.edu
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Diψ ¼
�
∂i −

1

8
ðcajcbkΓj

ki þ cak∂icbkÞ½γa; γb�
�
ψ? ð7Þ

If so, then the Lorentz bosons Lab
i couple to fermion

number and not to mass and lead to a Yukawa potential that
violates the inverse-square law and the weak-equivalence
principle.
Experiments [6–28] have set upper limits on the strength

of such Yukawa potentials for Lorentz bosons of mass less
than 20 eV. These upper limits imply that Lorentz bosons, if
they exist, are nearly stable and contribute to dark matter.
Whether fermions couple to Lorentz bosons Li with their
own action SL or to the spin connection ωi is an open
experimental question.
This paper outlines a version of general relativity with

fermions in which the six vector bosons of the spin
connection ωab

i are replaced by six vector bosons Lab
i

that gauge the Lorentz group and have their own Yang-
Mills-like action. The theory is invariant under general
coordinate transformations and independently under local
Lorentz transformations.
Section II sketches the traditional way of including

fermions in a theory of general relativity. Section III
describes the local Lorentz invariance of a theory with
Lorentz bosons. Section IV says why general-coordinate
invariance and local-Lorentz invariance are independent
symmetries. Section V describes the Yang-Mills-like action
of the gauge fields Lab

i of the Lorentz group. Sections VI
and VII suggest ways to make gauge theory and general
relativity more similar to each other. Section VIII discusses
Higgs mechanisms that may give masses to the gauge
bosons Lab

i of the Lorentz group. Section IX describes
some of the constraints that experimental tests [6–28] of the
inverse-square law and of the weak equivalence principle
place upon the proposed theory. Section X discusses the
stability and masses of L bosons and suggests that they may
be part or all of dark matter. Section XI summarizes
the paper.

II. GENERAL RELATIVITY WITH FERMIONS

A century ago, Einstein described gravity by the action

SE ¼ 1

16πG

Z
R

ffiffiffi
g

p
d4x ¼ 1

16πG

Z
gikRik

ffiffiffi
g

p
d4x ð8Þ

in which G ¼ 1=m2
P is Newton’s constant, the metric is

ð−;þ;þ;þÞ, letters from the middle of the alphabet are
world indexes, g ¼ j det gikj is the absolute value of the
determinant of the space-time metric, and the Ricci tensor
Rik ¼ Rl

ilk is the trace of the Riemann tensor

Rj
ilk ¼ ∂lΓj

ki − ∂kΓj
li þ Γj

lmΓm
ki − Γj

kmΓm
li ð9Þ

in which

Γk
il ¼ 1

2
gkjð∂lgji þ ∂igjl − ∂jgilÞ ¼ Γk

li ð10Þ

is the Levi-Civita connection which makes the covariant
derivative of the metric vanish [29].
The standard action of general relativity with fermions is

the sum of the Einstein-Hilbert action (8) and the action of
matter fields including the Dirac action

Z
−ψ̄ ½γaciað∂i þ ωi þ AiÞ�ψ

ffiffiffi
g

p
d4x: ð11Þ

In what follows, it is proposed to replace the spin
connection ωi in the standard Dirac action (11) with an
independent gauge field Li ¼ − 1

8
Lab

i½γa; γb� that has its
own action (5) and to use

SD ¼
Z

−ψ̄γaciað∂i þ Li þ AiÞψ
ffiffiffi
g

p
d4x ð12Þ

as the action of a Dirac field. This change and reflects the
independence of general coordinate invariance and local
Lorentz invariance and makes general relativity and quan-
tum field theory somewhat more similar.

III. LOCAL LORENTZ INVARIANCE

The Einstein action (8) has a trivial symmetry under local
Lorentz transformations that act on Lorentz indexes but
leave world indexes and coordinates unchanged. This
symmetry becomes apparent when Cartan’s tetrads cai
and cbk are used to write the metric gik in a form

gikðxÞ ¼ caiðxÞηabcbkðxÞ ð13Þ

that is unchanged by local Lorentz transformations

c0aiðxÞ ¼ Λa
bðxÞcbiðxÞ: ð14Þ

The Levi-Civita connection (10) and the action (8) are
defined in terms of the metric and so are also invariant
under local Lorentz transformations.
More importantly, the two Dirac actions (11) and (12)

have a nontrivial symmetry under local Lorentz trans-
formations. Under such a local Lorentz transformation, a
Dirac field transforms under the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ representa-

tion DðΛÞ of the Lorentz group with no change in its
coordinates x

ψ 0
αðxÞ ¼ D−1

αβ ðΛðxÞÞψβðxÞ: ð15Þ

The Lorentz-boson matrix Li ¼ − 1
8
Lab

i½γa; γb� makes
∂i þ Li a covariant derivative

∂i þ L0
i ¼ D−1ðΛÞð∂i þ LiÞDðΛÞ: ð16Þ
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In more detail with Λ ¼ ΛðxÞ, the matrix Li transforms as

L0
i ¼ D−1ðΛÞ∂iDðΛÞ þD−1ðΛÞLiDðΛÞ

¼ D−1ðΛÞ∂iDðΛÞ − 1

8
D−1ðΛÞLab

i½γa; γb�DðΛÞ

¼ D−1ðΛÞ∂iDðΛÞ − 1

8
Lab

iΛa
cΛb

d½γc; γd� ð17Þ

in which Λa
c ¼ Λ−1c

a. Since

Trð½γa; γb�½γc; γd�Þ ¼ 16ðδadδbc − δacδ
b
dÞ; ð18Þ

its components transform as

L0ab
i ¼ −

1

2
TrðL0

i½γa; γb�Þ

¼ Λc
aΛd

bLcd
i −

1

2
TrðD−1ðΛÞ∂iDðΛÞ½γa; γb�Þ: ð19Þ

Under an infinitesimal transformation

Λ ¼ I þ λ and DðλÞ ¼ I −
1

8
λab½γa; γb�; ð20Þ

the Lorentz bosons transform as

L0ab
i ¼ Lab

i þ Lcb
iλc

a þ Lad
iλd

b þ ∂iλ
ab: ð21Þ

The components of the spin connection obey similar
equations, and the conventional Dirac action (11) also is
invariant under local Lorentz transformations.
Local Lorentz transformations operate on the Lorentz

indexes a; b; c;… of the tetrads, of the spin connection
ωab

i, and of the gamma matrices γa½γb; γc�, and also on
the Dirac indexes α, β, γ of the gamma matrices and of the
Dirac fields ψ̄ ;ψ , but not upon the world index i or the
spacetime coordinates x. In this sense, the invariance of
Dirac’s action SD under local Lorentz transformations is
like an internal symmetry.

IV. LOCAL LORENTZ INVARIANCE AND
INVARIANCE UNDER GENERAL COORDINATE

TRANSFORMATIONS ARE INDEPENDENT
SYMMETRIES

The Dirac action SD is invariant both under a local
Lorentz transformation ΛðxÞ and under a general coordi-
nate transformation x → x0. Under a local Lorentz trans-
formation ΛðxÞ, the coordinates are unchanged, x0 ¼ x, and
the fields transform as

ψ 0
αðxÞ ¼ D−1

αβ ðΛðxÞÞψβðxÞ
c0aiðxÞ ¼ Λa

bðxÞcbiðxÞ
L0ab

iðxÞ ¼ Λc
aðxÞΛd

bðxÞLcd
iðxÞ

−
1

2
TrðD−1ðΛðxÞÞ∂iDðΛðxÞ½γa; γb�Þ

A0
iðxÞ ¼ AiðxÞ ð22Þ

in which Λc
aðxÞ ¼ Λ−1a

c. Under a general coordinate
transformation, the fields transform as

ψ 0
αðx0Þ ¼ ψαðxÞ

c0aiðx0Þ ¼
∂xk
∂x0i c

a
kðxÞ

L0ab
iðx0Þ ¼

∂xk
∂x0i L

ab
kðxÞ

A0
iðx0Þ ¼

∂xk
∂x0i AkðxÞ: ð23Þ

The two transformations, ψαðxÞ → D−1
αβ ðΛðxÞÞψβðxÞ and

x → x0, are different and independent; the coordinates x0
and ΛðxÞx are unrelated.
Every conventional, local Lorentz transformation is a

general coordinate transformation, so one might be tempted
to imagine that every general coordinate transformation is a
conventional, local Lorentz transformation. But one can see
that this is not the case by comparing the infinitesimal form
of a general coordinate transformation

dx0i ¼ ∂x0i
∂xk dx

k ð24Þ

which has 16 generators with that of a conventional, local
Lorentz transformation

dx0a ¼ Λa
bdxb ¼ dxa þ ðϵr · Ra

b þ ϵb · Ba
bÞdxb ð25Þ

which has only 6 [30].
Special relativity offers another temptation. In special

relativity, global Lorentz transformations Λ act on the
spacetime coordinates and on the indexes of a Dirac field

x0a ¼ Λa
bxb

ψ 0
αðx0Þ ¼ D−1

αβ ðΛÞψβðΛxÞ: ð26Þ

This global Lorentz transformation leaves the specially
relativistic Dirac action density unchanged

½−iψ†γ0γa∂aψ �0 ¼−iψ†D−1†γ0γaD−1∂ 0
aψ

¼−iψ†γ0DγaD−1Λa
c∂cψ

¼−iψ†γ0γbΛb
aΛa

c∂cψ

¼−iψ†γ0γbδcb∂cψ ¼−iψ†γ0γb∂bψ : ð27Þ
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But in general relativity with fermions, Cartan’s tetrads
cia allow the action to be invariant under a local Lorentz
transformation without a corresponding general coordinate
transformation. The matrix D−1

αβ ðΛðxÞÞ represents a local
Lorentz transformation and acts (15) on the spinor indexes
of the Dirac field but not on its spacetime coordinates.
Since

DγaD−1 ¼ Λa0
aγa

0
and DγaD−1 ¼ Λa0

aγa0 ; ð28Þ

a local Lorentz transformation (17) does not change

DγaD−1c0ia ¼ γbΛb
aΛa

ccic ¼ γbδcbc
i
c ¼ γbcib: ð29Þ

But the effect of a local Lorentz transformation (17) on the
Lorentz matrix Li is

Dð∂i þ L0
iÞD−1 − ∂i ¼ −

1

8
L0ab

iD½γa; γb�D−1

¼ −
1

8
Λc

aΛd
bLcd

iD½γa; γb�D−1

¼ −
1

8
Λ−1a

cΛ−1b
dLcd

iΛe
aΛf

b½γe; γf�

¼ −
1

8
Lcd

i½γc; γd� ¼ Li ð30Þ

so that

Dð∂i þ L0
iÞD−1 ¼ ∂i þ Li: ð31Þ

A local Lorentz transformation therefore leaves the Dirac
action density invariant

½−iψ†γ0γaciað∂i þ LiÞψ �0
¼ −iψ†D−1†γ0γac0iað∂i þ L0

iÞD−1ψ

¼ −iψ†D−1†γ0γac0iaD−1Dð∂i þ L0
iÞD−1ψ

¼ −iψ†γ0Dγac0iaD−1ð∂i þ LiÞψ
¼ −iψ†γ0γaciað∂i þ LiÞψ : ð32Þ

The symmetry under local Lorentz transformations is
independent of the symmetry under general coordinate
transformations. They are independent symmetries.

V. ACTION OF THE GAUGE FIELDS Li

Since local Lorentz symmetry is like an internal sym-
metry, its gauge fields Li ¼ − 1

8
Lab

i½γa; γb� should have an
action like that of a Yang-Mills field

SL ¼ −
1

4f2

Z
TrðF†

ikF
ikÞ ffiffiffi

g
p

d4x ð33Þ

in which

Fik ¼ ½∂i þ Li; ∂k þ Lk�: ð34Þ

In terms of the gamma matrices

γ0 ¼ −i
�
0 1

1 0

�
; γi ¼ −i

�
0 σi

−σi 0

�
;

and γ5 ¼
�
1 0

0 −1

�
; ð35Þ

the commutators in Li ¼ − 1
8
Lab

i½γa; γb� are for spatial a, b,
c ¼ 1, 2, 3,

½γa; γb� ¼ 2iϵabcσcI and ½γ0; γa� ¼ −2σaγ5: ð36Þ

So setting

rai ¼
1

2
ϵabcLbc

i and bai ¼ La0
i; ð37Þ

the matrix of gauge fields Li is

Li ¼ −
1

8
Lab

i½γa; γb� ¼ −i
1

2
ri · σ I −

1

2
bi · σ γ5: ð38Þ

Its field strength (34) is

Fik ¼ ½∂i þ Li; ∂k þ Lk�

¼ −i
1

2
ð∂irk − ∂kri þ ri × rk − bi × bkÞ · σ I

−
1

2
ð∂ibk − ∂kbi þ ri × bk þ bi × rkÞ · σ γ5; ð39Þ

and its Yang-Mills-like action density (33) is

SL ¼ −
1

4f2
TrðF†

ikF
ikÞ

¼ −
1

4f2
½ð∂irk − ∂kri þ ri × rk − bi × bkÞ

· ð∂irk − ∂kri þ ri × rk − bi × bkÞ
þ ð∂ibk − ∂kbi þ ri × bk þ bi × rkÞ
· ð∂ibk − ∂kbi þ ri × bk þ bi × rkÞ�: ð40Þ

VI. MAKING GENERAL RELATIVITY MORE
SIMILAR TO GAUGE THEORY

There are three reasons to define the covariant derivative
of a Dirac field in terms of Lorentz bosons

Li ¼ −
1

8
Lab

i½γa; γb� ð41Þ

with their own action (33) as
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Diψ ¼ ð∂i þ Li þ AiÞψ ð42Þ

rather than in terms of the spin connection (1)

ωi ¼ −
1

8
ωab

i½γa; γb�

¼ −
1

8
ðcajcbkΓj

ki þ cak∂icbkÞ½γa; γb� ð43Þ

as (3)

ð∂i þ ωi þ AiÞψ : ð44Þ

One reason is that the symmetry of local Lorentz
transformations is independent of the symmetry of general
coordinate transformations. So local Lorentz invariance
should have its own gauge field Li and action SL inde-
pendent of the tetrads and the Levi-Civita connection of
general coordinate transformations.
A second reason to prefer the Lorentz connection Li to

the spin connection ωi is that the L-boson covariant
derivative

�
∂i −

1

8
Lab

i½γa; γb�
�
ψ ð45Þ

is simpler than the spin-connection covariant derivative

�
∂i −

1

8
ðcajcbkΓj

ki þ cak∂icbkÞ½γa; γb�
�
ψ : ð46Þ

A third reason is that using the Lorentz connection (41),
the Dirac covariant derivative (42), and the action (33)
for the Lorentz connection, makes general relativity with
fermions more similar to the gauge theories of the stan-
dard model.

VII. MAKING GAUGE THEORY MORE
SIMILAR TO GENERAL RELATIVITY

Under a local Lorentz transformation, the spin connec-
tion ωi changes more naturally, more automatically than
does the Lorentz connection Li. The automatic feature of
the spin connection is that its definition (2) implies that
under infinitesimal (20) and finite local Lorentz trans-
formations it transforms as

ω0ab
i ¼ ωab

i þ ωcb
iλc

a þ ωad
iλd

b þ ∂iλ
ab ð47Þ

and as

ω0ab
i ¼ Λc

aΛd
bωcd

i þ Λc
a∂iΛcb: ð48Þ

The terms ∂iλ
ab and Λc

a∂iΛcb occur automatically without
the need to put in by hand a term like D−1ðΛÞ∂iDðΛÞ.

Terms like D−1ðΛÞ∂iDðΛÞ are a common feature of
gauge theories whether Abelian or non-Abelian. We can
make them occur automatically in local Lorentz trans-
formations if we add to the Lorentz connection Lab

i the
term uaα∂iubα in which the four Lorentz 4-vectors uaαðxÞ
obey the condition

uaαηαβubβ ¼ ηab; ð49Þ

and α ¼ 0, 1, 2, 3 is a label, not an index. It follows then
from this condition (49) on the quartet of vectors uaα that
the augmented Lorentz connection Lab

new i

Lab
new i ¼ Lab

i þ uaα∂iubα ð50Þ

automatically changes under a local Lorentz transformation
Λc

a ¼ Λ−1a
c to

L0ab
new i ¼ Λc

aΛd
bLcd

i þ Λc
aucα∂iðΛd

budαÞ
¼ Λc

aΛd
bðLcd

i þ ucα∂iudαÞ þ ucαudαΛc
a∂iΛd

b

¼ Λc
aΛd

bLcd
new i þ ηcdΛc

a∂iΛd
b

¼ Λc
aΛd

bLcd
new i þ Λc

a∂iΛcb

¼ Λc
aΛd

bLcd
new i þ Λ−1a

c∂iΛcb ð51Þ

without the need to explicitly add the last term Λ−1a
c∂iΛcb

by hand.
In matrix form, the condition (49) is the requirement

uaαηαβubβ ¼ ηab ð52Þ

that the matrix formed by the quartet of vectors uaα be a
Lorentz transformation

xauaαηαβubβyb ¼ xaηabyb: ð53Þ

The augmentation of the Lorentz connection Lab
i →

Lab
new i by the addition of the term uaα∂iubα, which is similar

to the tetrad term cak∂icbk of the spin connection (2),
makes its change (51) under local Lorentz transformations
as automatic as that (48) of the spin connection.
The use of a more automatic connection makes gauge

theory more similar to general relativity with fermions.
We can extend the use of such terms to internal

symmetries and so make the inhomogeneous terms appear
automatically rather than by hand or by fiat. For instance,
we can augment the Abelian connection Ai to

Anew iðxÞ ¼ AiðxÞ þ e−iϕðxÞ∂ieiϕðxÞ ð54Þ

in which ϕðxÞ is an arbitrary phase. A Uð1Þ transformation

e−iϕðxÞ → e−iðθðxÞþϕðxÞÞ and ψðxÞ → e−iθðxÞψðxÞ ð55Þ
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would then change the covariant derivative ð∂i þ AnewiÞψ
to

½ð∂iþAnew iÞψ �0 ¼ ð∂iþAiþ e−iðθþϕÞ∂ieiðθþϕÞÞe−iθψ
¼ e−iθð∂i− i∂iθþAiþ i∂iθþ e−iϕ∂ieiϕÞψ
¼ e−iθð∂iþAiþ e−iϕ∂ieiϕÞψ
¼ e−iθð∂iþAnew iÞψ : ð56Þ

Similarly, we can augment the non-Abelian connection
Ai ¼ −itαAα

i for SUðnÞ to

Anew iðxÞ ¼ AiðxÞ þ uαβðxÞ∂iu�αγðxÞ ð57Þ

in which the n n-vectors uαγ are orthonormal

uβαu�γα ¼ δβγ: ð58Þ

An SUðnÞ transformation

Ai → gAig†; u → gu; and ψ → gψ ð59Þ

would then change the covariant derivative ð∂i þ Anew iÞψ
to

½ð∂i þ Anew iÞψ �0 ¼ ð∂i þ gAig† þ gu∂iðu†g†ÞÞgψ
¼ gð∂i þ g†∂igþ Ai þ ð∂ig†Þuu†gþ u∂iu†Þψ
¼ gð∂i þ g†∂igþ Ai þ ð∂ig†Þgþ u∂iu†Þψ
¼ gð∂i þ Ai þ u∂iu†Þψ ¼ gð∂i þ Anew iÞψ : ð60Þ

VIII. POSSIBLE HIGGS MECHANISMS

The actions SL and SD (5) & (12) leave the gauge bosons
L massless, but a Higgs mechanism is possible. An
interaction with a field va that is a scalar under general
coordinate transformations but a vector under local Lorentz
transformations has as its covariant derivative

Diva ¼ ∂iva þ La
bivb: ð61Þ

If the time component v0 has a nonzero mean value in the
vacuum h0jv0j0i ≠ 0, then the scalar−DivaDiva contains a
mass term

−La
0iv0La

0iv0 ¼ −La0
iv0La0iv0 ð62Þ

that makes the boost vector bosons bsi ¼ Ls0
i massive but

leaves the rotational vector bosons rsi ¼ 1
2
ϵstuLtu

i mass-
less. On the other hand, if the spatial components have a
nonzero mean value, h0jv⃗j0i ≠ 0, then the mass term is

−La
sivsLa

sivs ¼ −Ls0s
ivsLs0sivs þ L0s

ivsL0sivs: ð63Þ

Adding the two mass terms (62) and (63), we find

−La
0ivbLa

0ivb ¼ L0s
ivaL0siva − Ls0s

ivsLs0sivs ð64Þ

which makes all six gauge bosons massive as long as the
mean value is timelike

h0jvavaj0i < 0 ð65Þ

and at least two spatial components h0jvsj0i ≠ 0 have
nonzero mean values in the vacuum. This condition holds
in all Lorentz frames if three vectors va1; va2, and va3 have
different timelike mean values in the vacuum.
In the vacuum of flat space, tetrads have mean values that

are Lorentz transforms of cai ¼ δai and that produce the
Minkowski metric (13)

gik ¼ δai ηabδ
b
k ¼ ηik: ð66Þ

So it is tempting to look for a Higgs mechanism that uses
the covariant derivatives Dlcak of the tetrads. For Γj

kl ¼ 0
and cak ¼ δak , the term

−
1

2
m2

LðDicakÞDicak ¼ −
1

2
m2

LLa
bicbkLa

cicck

¼ −
1

2
m2

LLab
iLab

i ð67Þ

makes the rotational bosons rsi ¼ 1
2
ϵstuLtu

i massive but
makes the boost bosons bsi ¼ Ls0

i tachyons. If weakly
coupled tachyons are unacceptable, then the Higgs mecha-
nism (61)–(64) that uses three world-scalar Lorentz vectors
with different timelike mean values in the vacuum va1 , v

a
2 ,

va3 is a more plausible way to make the gauge bosons Lab
i

massive.

IX. TESTS OF THE INVERSE-SQUARE LAW

In the static limit, the exchange of six Lorentz bosons
Lab

i of mass mL would imply that two macroscopic bodies
of F and F0 fermions separated by a distance r would
contribute to the energy a static Yukawa potential

VLðrÞ ¼
3FF0f2

2πr
e−mLr: ð68Þ

This potential is positive and repulsive (between fermions
and between antifermions) because the L’s are vector
bosons. It violates the weak equivalence principle because
it depends upon the number F of fermions (minus the
number of antifermions) as F ¼ 3Bþ L and not upon their
masses. The potential VLðrÞ changes Newton’s potential to

VNLðrÞ ¼ −G
mm0

r
ð1þ αe−r=λÞ ð69Þ
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in which the coupling strength α is

α ¼ −
3FF0f2

2πGmm0 ¼ −
3FF0m2

Pf
2

2πmm0 ; ð70Þ

and the length λ is λ ¼ ℏ=cmL. Couplings α ∼ 1 are of
gravitational strength. Experiments [6–28] that test the
inverse-square law and the weak equivalence principle have
put upper limits on the strength jαj of the coupling for a
wide range of lengths 10−8 < λ < 1013 m and masses
2 × 10−20 < mL < 20 eV.
Experiments that tested the inverse-square law at very

short distances, between 10 nm and 3 mm, were done with
masses of gold [6], of gold and silicon [7], of platinum [8],
and of tungsten [9]. For a massm of N atoms of gold which
has FAu ¼ 670 fermions (quarks and electrons) in each
atom of mass mAu ¼ 196.966 u, the ratio FmP=m that
appears in the coupling α (70) is

NFAumP

NmAu
¼ FAumP

mAu
¼ 670mP

196.966u
¼ 4.458 × 1019: ð71Þ

So the coupling strength is αAu ¼ −9.490 × 1038 f2 for
gold. An atom of silicon has FSi ¼ 98 fermions and a mass
of mSi ¼ 28.085 u, so FSimP=mSi ¼ 4.573 and αSi ¼
−9.988 × 1038 f2. Platinum has FPt ¼ 663 and mPt ¼
195.084 u, so αPt ¼ −9.474 × 1038 f2. Tungsten has FW¼
626 and mW ¼ 183.84 u, so αW ¼ −9.510 × 1038 f2. For
such test masses, f2 ≈ jαj × 10−39.
The Riverside group [6] placed on the strength jαAuj an

upper limit (95% confidence) that drops from jαAuj ≲ 1019

to jαAuj≲ 1016 as the length λ rises from 10−8 m to
4 × 10−8 m. The IUPUI group [7] put an upper limit
(95% confidence) on the strength jαAu-Sij that drops from
jαAu-Sij≲ 1016 to jαAu-Sij ≲ 105 as the length λ rises from

4 × 10−8 m to 8 × 10−6 m. These results of the Riverside
and IUIPUI groups are plotted in Fig. 1 from Chen
et al. [7].
Other short-distance experiments [8,9,11–20,26–28]

have tested the inverse-square law at the slightly longer
distances of 2 × 10−6 < λ < 3 × 10−3 m. The Washington
group [8] used test masses of platinum. The HUST, Sun
Yat-sen, Jiangxi Normal, HUAT, andWuhan Polytechnique
groups [9] used test masses of tungsten. The upper limits
(95% confidence) on the strength jαj are shown for
platinum in Fig. 2 from Lee et al. [8] and for tungsten
in Fig. 3 from Tan et al. [9]. The upper limit on the strength
jαj falls from jαj ≲ 106 at λ ∼ 2 × 10−6 m to jαj≲ 104 at

10-7 10-6 10-5 10-4
10-1

103

107

1011

1015

1019

IUPUI
    (2014)

Radion

Strange modulus

Stanford

Yale

IUPUI (2005-2007)

Washington

Gluon modulus

 (meters)

Dilaton

Riverside
Region

excluded by experiments

Gauged
baryons

FIG. 1. Upper limits (95% confidence) on the strength jαAuj of
Yukawa potentials that violate the inverse-square law at distances
10−8 < λ < 2 × 10−4 m. (Fig. 4 of Chen et al. [7]).

FIG. 2. Upper limits (95% confidence) on the strength jαPtj of
Yukawa potentials that violate the inverse-square law at sub-mm
distances [8–20]. (Fig. 5(b) of Lee et al. [8]).

FIG. 3. Upper limits (95% confidence) on the strength jαWj of
Yukawa potentials that violate the inverse-square law at mm and
sub-mm distances [7,9,11,14,15,17–20,26–28]. Light lines are
theory [13,22] (Fig. 6 of Tan et al. [9]).
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λ ∼ 8 × 10−6 m and then from jαj≲ 103 at λ ∼ 10−5 m
to jαj≲ 1 at λ ∼ 4 × 10−5 m and to jαj≲ 10−3 at
λ ∼ 2 × 10−3 m.
Other groups [13,20–25,28,31] have tested the inverse-

square law over a huge range of longer distances, 10−3 <
λ < 3 × 1015 m. In 2012 the HUST group [28] put an upper
limit of jαj≲ 10−3 for 7 × 10−4 < λ < 5 × 10−3 m, while
in 1985 the Irvine group [20] put an upper limit of jαj ≲
10−3 for lengths 7 × 10−3 < λ < 10−1 m.
Fischbach and Talmadge [31] and Adelberger et al. [13]

have reported tests of the inverse-square law for distances
in the range 10−2< λ<1015m [13,20,23,24,31]. As shown
in Fig. 4 from Adelberger et al. [13], the upper limit lies
between jαj < 3 × 10−4 and jαj < 2 × 10−3 for 10−2 < λ <
104 m but drops from jαj ≲ 10−4 to jαj≲ 10−10 as the
length increases from 104 to 108 m. The upper limit is
about jαj≲ 5 × 10−9 on planetary scales 1010 < λ <
5 × 1011 m.
TheWashington group have used torsion-balance experi-

ments to look for Yukawa potentials that violate the weak
equivalence principle in the range of distances 0.3 < λ <
109 m [13]. They have put upper limits (95% confidence)
on the strength jαj of the coupling to B, Z, and N ≡ B − L
but not explicitly on the coupling to fermion number
F ¼ 3Bþ L. For B, their upper limit runs from jαj ≲
10−5 at 10−1 m to jαj≲ 6 × 10−8 at 7 × 105 m and then
falls to jαj≲ 10−10 for 107 < λ < 1013 m as shown by the
dashed lines in Fig. 5 from Bergé et al. [10]. For Z and N,
their upper limit runs from jαj≲ 10−6 at 10−1 m to jαj ≲
6 × 10−9 at 106 m and then falls to jαj≲ 2 × 10−11 for
107 < λ < 109 m [13].

More recent satellite measurements by the MICRO-
SCOPE mission have lowered the upper limit on the
strength jαj of Yukawa potentials that violate the weak
equivalence principle by about an order of magnitude for
107 < λ < 109 m [10]. The upper limit for coupling to B is
jαj≲ 10−11 for 107 < λ < 109 m as shown in Fig. 5 from
Bergé et al. [10]. Their limit for coupling to N is even
lower: jαj≲ 4 × 10−13 for 107 < λ < 109 m [10].

FIG. 4. Upper limits (95% confidence) on the strength jαj of
Yukawa violations of the inverse-square law at large distances
10−2 < λ < 1015 m [13,20,23,24,31] (Fig. 10 of Adelberger
et al. [13]).

FIG. 5. Upper limits (95% confidence) on the strength jαj of
Yukawa potentials that violate the weak equivalence principle at
long distances [10,13,20,21,23,24] (Fig. 1 of Bergé et al. [10]).

10-9 10-7 10-5 10-3 10-1 101 103 105 107 109
10-15

10-10

10-5

100

105

1010

1015

FIG. 6. The upper bound (95% confidence) on the strength jαj
of Yukawa potentials that violate the inverse-square law or the
weak equivalence principle at various distances λ is the solid
dark-blue curve [6–28]. The region under the dotted green line
denotes L bosons with lifetimes greater than the age of the
universe for the case in which the fudge factor b ¼ 1. The region
below that line and between the vertical dashed blue lines denotes
L bosons that are between 1 and 100% of dark matter. The thin
vertical gray solid line marks the wavelength of an L boson
whose mass is 2meff

νe ¼ 2.2 eV [32].
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Some of these important results [6–28] are summarized
in broad-brush fashion in Fig. 6. The upper bound
(95% confidence) on jαj is the solid dark-blue curve which
falls from 1019 for λ ¼ 7 × 10−8 m to 10−11 at λ ¼ 109 m.
The ðλ; jαjÞ region above this curve is excluded. Points in
the allowed region that are below the blue-green dotted line
correspond to L bosons with lifetimes longer than the age
of the universe. Those that also are between the vertical
dashed lines denote effectively stable L bosons whose
masses could account for between 1 and 100% of dark
matter.

X. LORENTZ BOSONS AS DARK MATTER

Analysis of the double galaxy cluster 1E0657-558 (the
“bullet cluster” at z ¼ 0.296) suggests [33,34] that dark
matter interacts weakly, perhaps with gravitational strength
jαj ∼ 1. As of now, there has been no accepted detection of
dark matter in a laboratory.
The experiments [6–28] sketched in Sec. IX put no upper

limits on the mass mL ¼ h=cλ of L bosons and no lower
limits on their coupling jαj. The proposed L bosons are
electrically neutral. If their mass is heavy enough and if
their coupling is sufficiently weak, then they would be an
effectively stable part of dark matter.
Because they couple to fermion number and not to mass,

their coupling f2 is much weaker than jαj by a factor related
to Avogadro’s number. For the metals (Au, Si, Pt, and W)
used in many of the experiments [6–28], the relation is

f2 ∼ jαj × 10−39: ð72Þ

Even for the highest upper limit jαj < 1019 shown in Fig. 6,
the coupling of the L bosons is only f2 ≲ 10−20.
Because they interact so weakly, L bosons decay slowly.

The decay width of the Z boson is ΓZ ¼ 3.7e2mZc2=
4π ¼ 2.5 GeV, and its lifetime is τZ ¼ ℏ=ΓZ ¼ 2.6×
10−25 s. The analog of the electromagnetic coupling
e2=4π ∼ 1=137 for L bosons is f2=4π. In terms of f2

and jαj (72), the decay width of an L boson of mass mL
is roughly

ΓL ∼
bf2mLc2

4π
¼ bjαjmLc2

4π
× 10−39 ð73Þ

in which b is a fudge factor, 0.1≲ b≲ 10, that depends on
the decay channels. The L boson lifetime then is

τ ¼ ℏ
ΓL

¼ 8.3 × 1024

bjαjmLc2½eV�
s ¼ 1.9

bjαj
107

mLc2½eV�
t0 ð74Þ

in which t0 ¼ 4.356 × 1017 s is 13.8 billion years, the age
of the universe. An L boson of mass mL < ð19=bjαjÞ MeV
is effectively stable in that its lifetime exceeds the
age of the universe. If the fudge factor b is taken to be

unity, then L bosons of wavelength λ are effectively stable
for couplings

jαj≲ ð1.5 × 1013Þ λ½m� ð75Þ
which is the dotted green line in Fig. 6. Points below it
denote effectively stable L bosons.
If the lightest fermion has massmlightest, then L bosons of

mass less than 2mlightest would be absolutely stable. The
dash-dotted gray vertical line in Fig. 6 is the wavelength
λ ¼ 5.6 × 10−7 m of twice the upper limit on the effective

mass of the electron neutrino, 2mðeffÞ
νe [32].

The mass density of cold dark matter is ρcdm ¼
ð2.2414� 0.017Þ × 10−27 kgm−3 [[35], col. 7, p. 15].
So if all of cold dark matter were made of L bosons of
mass mL, then their number density would be

nL ¼ ρcdm
mL

¼ 1.26 × 109

mLc2½eV�
m−3: ð76Þ

To estimate the present number density of each kind of L
boson, I will assume that the L bosons are effectively stable
and have not interacted since they dropped out of equilib-
rium in the very early universe.
At temperatures kT ≫ mLc2 so high that the weakly

interacting L bosons were in thermal equilibrium, the
number density of each kind of the six L bosons is given
by the Planck distribution as

nðTÞ ¼ 3ζð3ÞðkTÞ3
π2ðℏcÞ3 ¼ 9.609 × 107T3

ðmKÞ3 : ð77Þ

In the limit of vanishing coupling jαj → 0, the number
nðtÞa3ðtÞ of L bosons within a fixed comoving box does
not change with time. So the number now nðt0Þa3ðt0Þ ¼
nðt0Þ is the number at any earlier time multiplied by a3ðtÞ

nðt0Þ ¼ nðtÞa3ðtÞ: ð78Þ
At very early times, we may approximate the integral for
the time as a function of the scale factor a as [36]

tðaÞ ¼ 1

H0

Z
a

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛx2 þΩk þ Ωmx−1 þΩrx−2

p
≈

1

H0

Z
a

0

xdxffiffiffiffiffiffi
Ωr

p ¼ a2

2H0

ffiffiffiffiffiffi
Ωr

p : ð79Þ

The Hubble constant and the fraction Ωr ¼ 9.0824 × 10−5

then give us the scale-factor as

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0

ffiffiffiffiffiffi
Ωr

p
t

q
¼ 2.04 × 10−10

ffiffiffiffiffiffiffi
t½s�

p
: ð80Þ

IfN types of particles made up the radiation at very early
times, then the time and the temperature were related
by [37]
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ffiffiffiffiffi
N

p
tT2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c2

16πGar

s
¼ 3.25924 × 1020 s K2 ð81Þ

in which ar is the radiation constant

ar ¼
π2k4

15ℏ3c3
¼ 7.56577ð5Þ × 10−16 Jm−3 K−4: ð82Þ

So in terms of the number density (77), the scale-factor
(80), and the time-temperature relation (81), the number
density is roughly

nðt0Þ ¼ nðtÞa3ðtÞ ¼ 4.8 × 109

N 3=4 m−3: ð83Þ

In the standard model, N ¼ 126, but the actual number
relevant at high temperatures may be much higher. If we
assume that N ¼ 44, then N −3=4 ¼ 1=64, and the present
number density of each kind of L boson would be

nðt0Þ ¼ 7.5 × 107 m−3: ð84Þ

Let us further assume that all six L bosons get the same
mass mL. In this case, if their mass density is not to exceed
the density of dark matter, then the inequality

6mLnðt0Þ < ρcdm ¼ 2.24 × 10−27 kgm−3 ð85Þ

implies that the mass mL must be less than

mL < 4.9 × 10−36 kg ¼ 2.8 eV=c2: ð86Þ

The lifetime of an L boson (74) would then be

τL >
3.4
bjαj × 106t0 ð87Þ

which for bjαj < 1.7 × 106 exceeds the age t0 of the
universe. The range λL ¼ h=mLc of the corresponding
Yukawa potential is

λL > 4.5 × 10−7 m: ð88Þ

Points ðλ; jαjÞ below the dotted green line in Fig. 6 and
between its vertical dashed blue-green lines denote L
bosons constituting between 1 and 100% of the dark
matter. The upper limit on the effective mass of the electron

neutrino is mðeffÞ
νe < 1.1 eV [32]. The thin gray vertical line

labels L bosons of mass mL ¼ 2meff
νe .

XI. CONCLUSIONS

General relativity with fermions has two independent
symmetries: general coordinate invariance and local
Lorentz invariance. General general coordinate invariance

acts on coordinates and on the world indexes of tensors but
leaves Dirac and Lorentz indexes unchanged. Local
Lorentz invariance acts on Dirac and Lorentz indexes
but leaves world indexes and coordinates unchanged. It
acts like an internal symmetry.
General coordinate invariance is implemented by the

Levi-Civita connection Γj
ki and by Cartan’s tetrads cai. In

the standard formulation of general relativity with fer-
mions, local Lorentz invariance is implemented by the
same fields in a combination called the spin connection
ωab

i ¼ cajcbkΓj
ki þ cak∂icbk. These fields all have the

same action, the Einstein-Hilbert action R.
Because local Lorentz invariance is different from and

independent of general coordinate invariance, it is sug-
gested in this paper that local Lorentz invariance is
implemented by different and independent fields Lab

i that
gauge the Lorentz group and that have their own Yang-
Mills-like action.
The replacement of the spin connection with Lorentz

bosons moves general relativity closer to gauge theory and
simplifies the standard covariant derivative�

∂i −
1

8
ðcbjcckΓj

ki þ cbk∂icckÞ½γb; γc�
�
ψ ð89Þ

to �
∂i −

1

8
Lab

i½γa; γb�
�
ψ : ð90Þ

Whether the Dirac action has the spin-connection form (89)
or the Lorentz-boson form (90) is an experimental question.
Because the proposed action (12) couples the gauge

fields Lab
i to fermion number and not to mass, it violates

the weak equivalence principle. It also leads to a Yukawa
potential (68) that violates Newton’s inverse-square law.
Experiments [6–28] have put upper limits on the strength

jαj of the Yukawa potentials (69) that violate the inverse-
square law and the weak equivalence principle for distances
10−8 < λ < 109 m. The upper limit ranges from jαj < 1019

at λ ¼ 10−8 m to jαj < 103 at λ ¼ 10−5 m and to jαj <
10−11 at λ ¼ 109 m. There are no experimental lower limits
on the coupling at any distance, so L bosons could have
lifetimes that exceed the age of the universe. There are no
experimental upper limits on the masses of L bosons. Long
lived, massive, weakly interacting, neutral L bosons would
contribute to dark matter. From the obvious requirement
that they could make up all of dark matter but not more, we
can infer a crude theoretical upper limit on their mass of
mL ≲ 2.8 eV=c2 if all 6 are stable and have the same mass.
A contracting universe of fermions (or of antifermions)

would have more of a tendency to bounce with L bosons
than without them.
The discovery of a violation of the inverse-square law by

future experiments would not be enough to establish the
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existence of L bosons because the violation could be due to
the physics of a quite different theory.
If L bosons are discovered, physicists will decide how to

think about the force they mediate. The force might be
considered to be gravitational because it arises in a theory
that is a modest and natural extension of general relativity.
But the force is not carried by gravitons. It is carried by L
bosons, and they implement a symmetry, local Lorentz

invariance, that is independent of general coordinate
invariance. So the force is new and might be called a
Lorentz force.
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and J.-P. Uzan, MICROSCOPE Mission: First Constraints
on the Violation of the Weak Equivalence Principle by a
Light Scalar Dilaton, Phys. Rev. Lett. 120, 141101 (2018).

[11] W.-H. Tan, S.-Q. Yang, C.-G. Shao, J. Li, A.-B. Du, B.-F.
Zhan, Q.-L. Wang, P.-S. Luo, L.-C. Tu, and J. Luo, New
Test of the Gravitational Inverse-Square Law at the Sub-
millimeter Range with Dual Modulation and Compensation,
Phys. Rev. Lett. 116, 131101 (2016).

[12] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, C.-G. Shao, L.-C. Tu,
W.-H. Tan, and J. Luo, Test of the Gravitational Inverse
Square Law at Millimeter Ranges, Phys. Rev. Lett. 108,
081101 (2012).

[13] E. Adelberger, J. Gundlach, B. Heckel, S. Hoedl, and
S. Schlamminger, Torsion balance experiments: A low-
energy frontier of particle physics, Prog. Part. Nucl. Phys.
62, 102 (2009).

[14] A. A. Geraci, S. J. Smullin, D. M. Weld, J. Chiaverini, and
A. Kapitulnik, Improved constraints on non-Newtonian
forces at 10 microns, Phys. Rev. D 78, 022002 (2008).

[15] D. Kapner, T. Cook, E. Adelberger, J. Gundlach, B. R.
Heckel, C. Hoyle, and H. Swanson, Tests of The Gravita-
tional Inverse-Square Law Below the Dark-Energy Length
Scale, Phys. Rev. Lett. 98, 021101 (2007).

[16] S. Smullin, A. Geraci, D. Weld, J. Chiaverini, S. P. Holmes,
and A. Kapitulnik, Constraints on Yukawa-type deviations
from Newtonian gravity at 20 microns, Phys. Rev. D 72,
122001 (2005); Erratum, Phys. Rev. D 72, 129901 (2005).

[17] C. Hoyle, D. Kapner, B. R. Heckel, E. Adelberger, J.
Gundlach, U. Schmidt, and H. Swanson, Sub-millimeter
tests of the gravitational inverse-square law, Phys. Rev. D
70, 042004 (2004).

[18] J. Long, H. Chan, A. Churnside, E. Gulbis, M. Varney, and
J. Price, Upper limits to submillimetre-range forces from
extra space-time dimensions, Nature (London) 421, 922
(2003).

[19] J. Chiaverini, S. Smullin, A. Geraci, D. Weld, and A.
Kapitulnik, New Experimental Constraints on Nonnewto-
nian Forces Below 100 Microns, Phys. Rev. Lett. 90,
151101 (2003).

[20] J. Hoskins, R. Newman, R. Spero, and J. Schultz, Exper-
imental tests of the gravitational inverse square law for mass
separations from 2-cm to 105-cm, Phys. Rev. D 32, 3084
(1985).

[21] J. G. Williams, S. G. Turyshev, and D. H. Boggs, Progress in
Lunar Laser Ranging Tests of Relativistic Gravity, Phys.
Rev. Lett. 93, 261101 (2004).

[22] E. Adelberger, B. R. Heckel, and A. Nelson, Tests of the
gravitational inverse square law, Annu. Rev. Nucl. Part. Sci.
53, 77 (2003).

[23] M. V. Moody and H. J. Paik, Gauss’s Law Test of Gravity at
Short Range, Phys. Rev. Lett. 70, 1195 (1993).

[24] R. Spero, J. K. Hoskins, R. Newman, J. Pellam, and J.
Schultz, Test of the Gravitational Inverse-Square Law at
Laboratory Distances, Phys. Rev. Lett. 44, 1645 (1980).

[25] S. Schlamminger, K. Y. Choi, T. A. Wagner, J. H. Gundlach,
and E. G. Adelberger, Test of the Equivalence Principle
Using a Rotating Torsion Balance, Phys. Rev. Lett. 100,
041101 (2008).

[26] R. Decca, D. Lopez, H. Chan, E. Fischbach, D. Krause, and
C. Jamell, Constraining New Forces in the Casimir Regime
Using the Isoelectronic Technique, Phys. Rev. Lett. 94,
240401 (2005).

[27] L.-C. Tu, S.-G. Guan, J. Luo, C.-G. Shao, and L.-X.
Liu, Null Test of Newtonian Inverse-Square Law at

IS THE LOCAL LORENTZ INVARIANCE OF GENERAL … PHYS. REV. D 102, 065011 (2020)

065011-11

https://doi.org/10.1103/PhysRev.101.1597
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/PhysRevD.14.2505
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRevLett.116.221102
https://doi.org/10.1103/PhysRevLett.116.221102
https://doi.org/10.1103/PhysRevLett.124.101101
https://doi.org/10.1103/PhysRevLett.124.051301
https://doi.org/10.1103/PhysRevLett.124.051301
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.116.131101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1016/j.ppnp.2008.08.002
https://doi.org/10.1016/j.ppnp.2008.08.002
https://doi.org/10.1103/PhysRevD.78.022002
https://doi.org/10.1103/PhysRevLett.98.021101
https://doi.org/10.1103/PhysRevD.72.122001
https://doi.org/10.1103/PhysRevD.72.122001
https://doi.org/10.1103/PhysRevD.72.129901
https://doi.org/10.1103/PhysRevD.70.042004
https://doi.org/10.1103/PhysRevD.70.042004
https://doi.org/10.1038/nature01432
https://doi.org/10.1038/nature01432
https://doi.org/10.1103/PhysRevLett.90.151101
https://doi.org/10.1103/PhysRevLett.90.151101
https://doi.org/10.1103/PhysRevD.32.3084
https://doi.org/10.1103/PhysRevD.32.3084
https://doi.org/10.1103/PhysRevLett.93.261101
https://doi.org/10.1103/PhysRevLett.93.261101
https://doi.org/10.1146/annurev.nucl.53.041002.110503
https://doi.org/10.1146/annurev.nucl.53.041002.110503
https://doi.org/10.1103/PhysRevLett.70.1195
https://doi.org/10.1103/PhysRevLett.44.1645
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.100.041101
https://doi.org/10.1103/PhysRevLett.94.240401
https://doi.org/10.1103/PhysRevLett.94.240401


Submillimeter Range with a Dual-Modulation Torsion
Pendulum, Phys. Rev. Lett. 98, 201101 (2007).

[28] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, C.-G. Shao, L.-C. Tu,
W.-H. Tan, and J. Luo, Test of the Gravitational Inverse
Square Law at Millimeter Ranges, Phys. Rev. Lett. 108,
081101 (2012).

[29] A. N.Bernal, B. Janssen,A. Jimenez-Cano, J. A.Orejuela,M.
Sanchez, and P. Sanchez-Moreno, On the (non-)uniqueness
of the Levi-Civita solution in the Einstein–Hilbert–Palatini
formalism, Phys. Lett. B 768, 280 (2017).

[30] K. Cahill, Physical Mathematics, 2nd ed. (Cambridge
University Press, Cambridge, England, 2019), pp. 435–
447, https://doi.org/10.1017/9781108555814.

[31] E. Fischbach and C. L. Talmadge, The Search for non-
Newtonian Gravity (Springer, New York, USA, 1999),
p. 305.

[32] P. Zyla, The review of particle physics, Prog. Theor. Exp.
Phys. 2020, 083C01 (2020), Neutrino Masses, Mixing, and
Oscillations.

[33] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch,
S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical
proof of the existence of dark matter, Astrophys. J. Lett.
648, L109 (2006).

[34] S. Weinberg, Cosmology (Oxford University Press,
New York, 2010), p. 186, https://doi.org/10.1007/s10714-
008-0728-z.

[35] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, arXiv:1807.06209.

[36] K. Cahill, Physical Mathematics, 2nd ed. (Cambridge
University Press, Cambridge, England, 2019), p. 518,
https://doi.org/10.1017/9781108555814.

[37] S.Weinberg,Cosmology (OxfordUniversity Press,NewYork,
2010), p. 152, https://doi.org/10.1007/s10714-008-0728-z.

Correction: The text preceding Eq. (15) and the superscripts in
the third part of Eq. (23) contained typographical errors and have
been fixed.

KEVIN CAHILL PHYS. REV. D 102, 065011 (2020)

065011-12

https://doi.org/10.1103/PhysRevLett.98.201101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1016/j.physletb.2017.03.001
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1086/508162
https://doi.org/10.1086/508162
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://arXiv.org/abs/1807.06209
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1017/9781108555814
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z
https://doi.org/10.1007/s10714-008-0728-z

