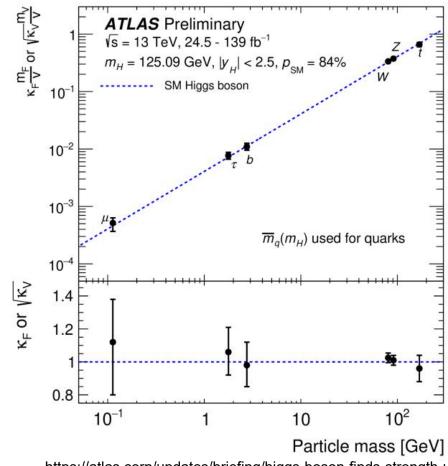


Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment

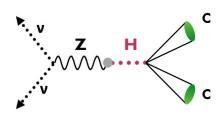
Zijun Xu (SLAC) on behalf of the ATLAS Collaboration 16-27 August 2021



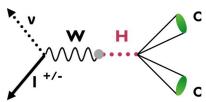
contact: zixu@cern.ch

Why search for H→cc

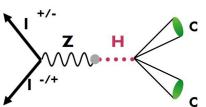
- Standard Model Higgs boson discovered in 2012!
- The measurements at LHC have established Higgs Yukawa couplings to Fermions are close to the Standard Model(SM) expectation for the 3rd Fermion generation
 - $H \rightarrow bb$, $H \rightarrow \tau\tau$, ttH
- universal Yukawa coupling for other Fermion generations has a little experimental constraint
 - evidence of $H \rightarrow \mu \mu$, JHEP 01 (2021) 148
- The search of H→cc decay is crucial for directly probing the Higgs mechanism for the 2nd generation of fermions/quarks

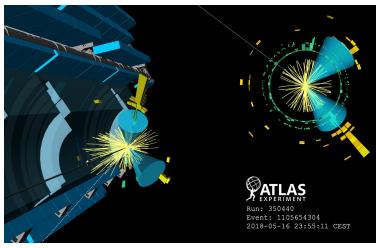


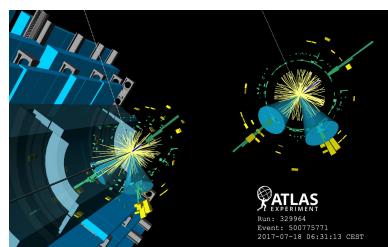
https://atlas.cern/updates/briefing/higgs-boson-finds-strength-unity

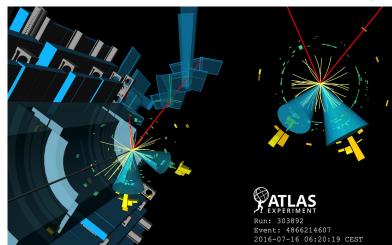


VHcc Candidates from ATLAS Run2

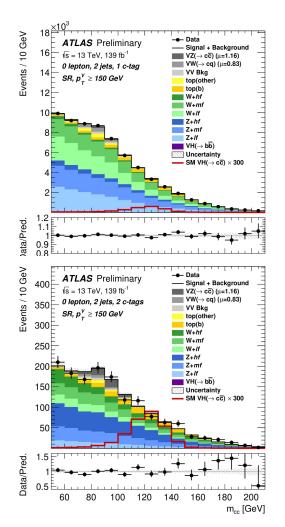


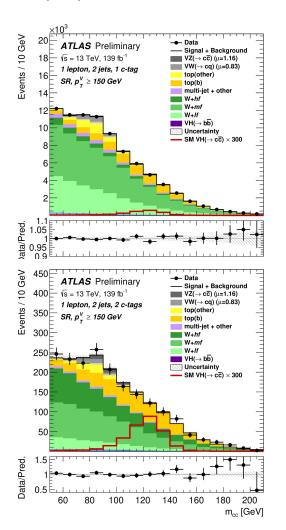


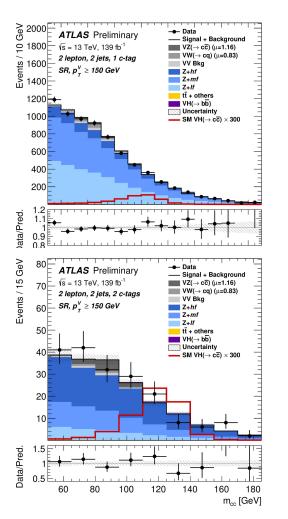




- 2 c-tagged jets (blue cones)
- large missing transverse energy (dash-line)

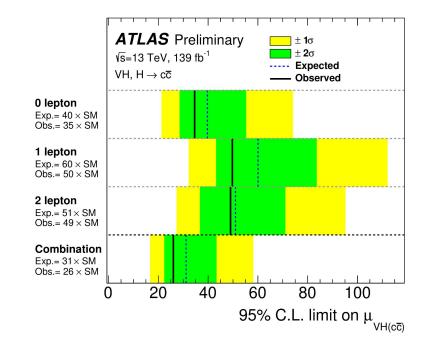

- 2 c-tagged jets (blue cones)
- 1 electron (green)
- large missing transverse energy (dash-line)

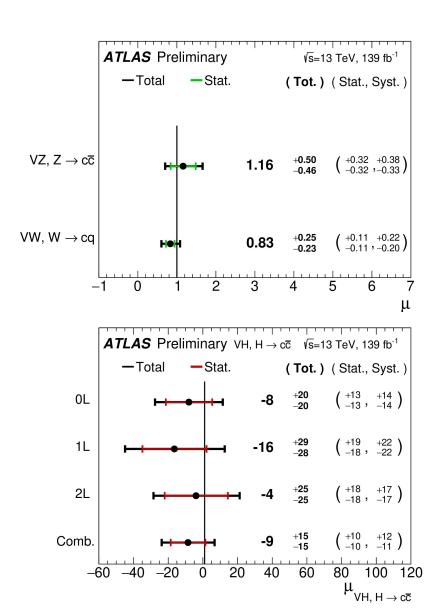

- 2 c-tagged jets (blue cones)
- 2 muons (red line)



Post-fit m(cc) distributions for 6 selected SRs

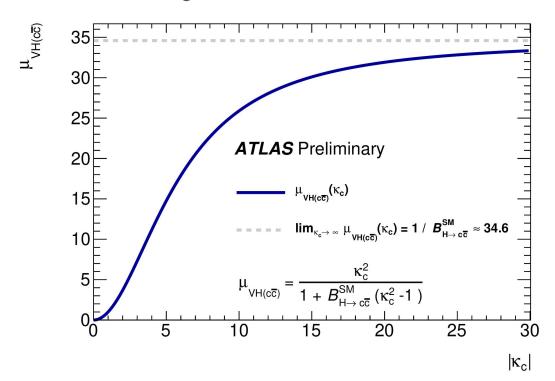
• Binned profile likelihood fit on m(cc) distribution simultaneously in 16 SRs and 28 CRs

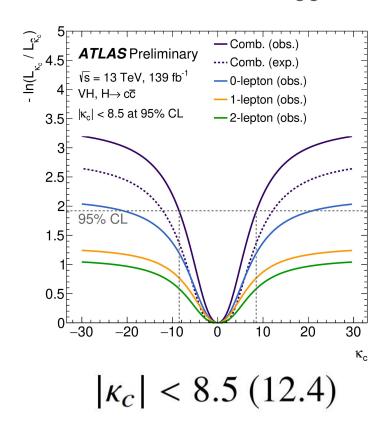




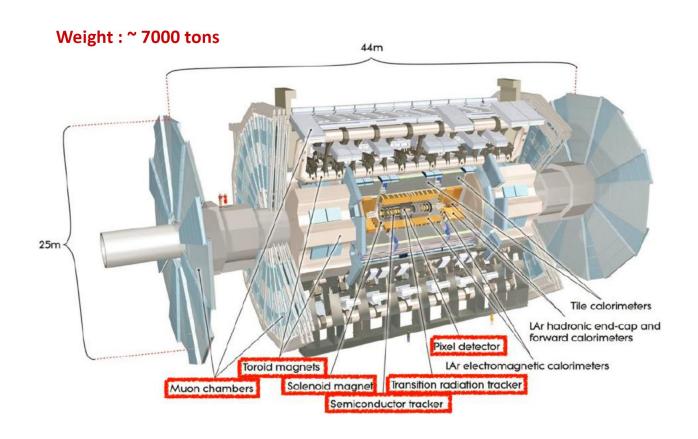
Results

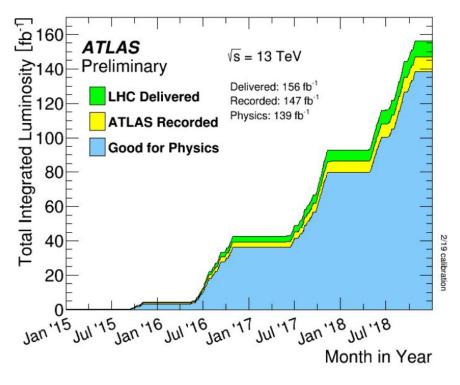
- SM VZ(cc) signal significance: 2.6(2.2) σ
- SM VW(cq) signal significance: 3.8(4.6) σ
- world's tightest direct constraint on H→cc
 - W/ZH(cc) **obs**(exp) < **26** (31) xSM





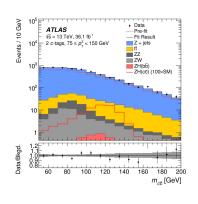
κ_c interpretation

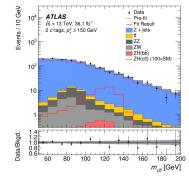

- κ_c: quantify possible deviations from the SM
 - signal strength as a function of coupling enhancement Kc
 - Assuming κ=1 for other fermions and bosons and no BSM contributions to Higgs width



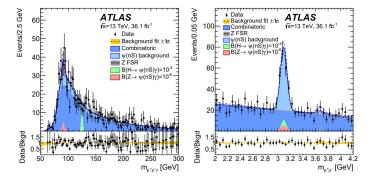
Backup

ATLAS Detector and Run-2 Data-taking

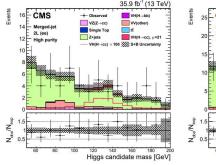


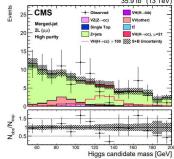


21.0 x 10³³ cm⁻² s⁻¹


Previous ATLAS/CMS Direct Search Results

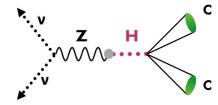
- ATLAS, PRL 120 (2018) 211802
 - Z(II)H only, 36/fb
 - obs 110xSM (exp 150 +80 -40)

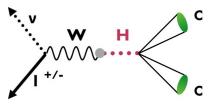


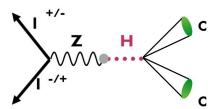

- ATLAS, PLB 786 (2018) 134
 - $H \rightarrow J/\psi \gamma$, 36/fb
 - obs 116xSM (exp 100 +47 -27)

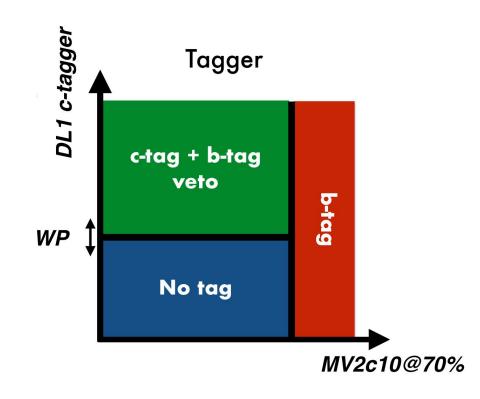
- Z(vv)H, W(lv)H, Z(II)H. 36/fb
- obs 70xSM (exp 37 +16 -10)

ATLAS full run2 H→cc search


- Full Run2 Dataset, 139 fb-1
- Looking for Higgs bosons produced together with a vector boson (W/Z) to moderate the contamination from huge QCD background
 - events are separated by number of leptons
 - targeting ZH→vvcc, WH→Ivcc, ZH→IIcc

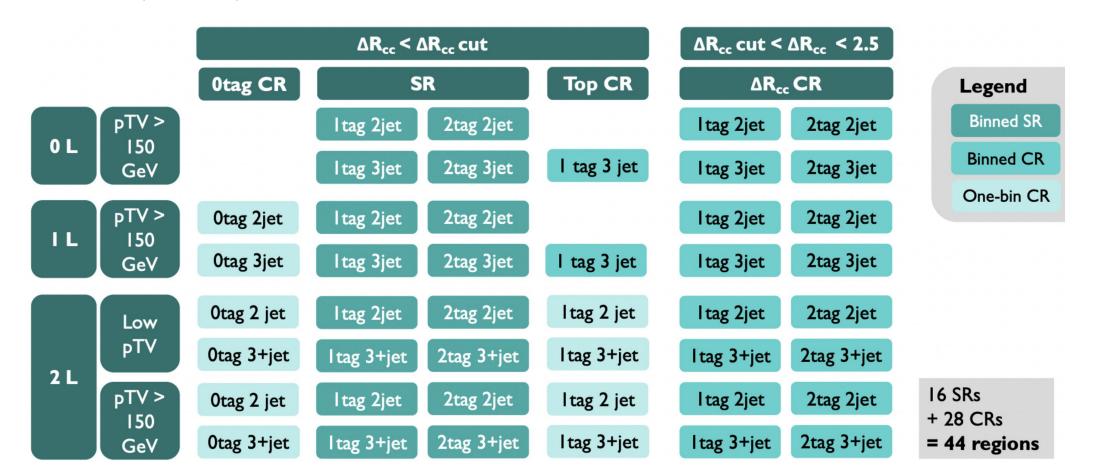

 Diboson processes, VW(cq) and VZ(cc), are used to validate the analysis strategy


 Multivariate flavor tagging algorithms are used to distinguish jets originating from the hadronization of charm quarks, bottom quarks, or light-quarks/gluons 0-lepton

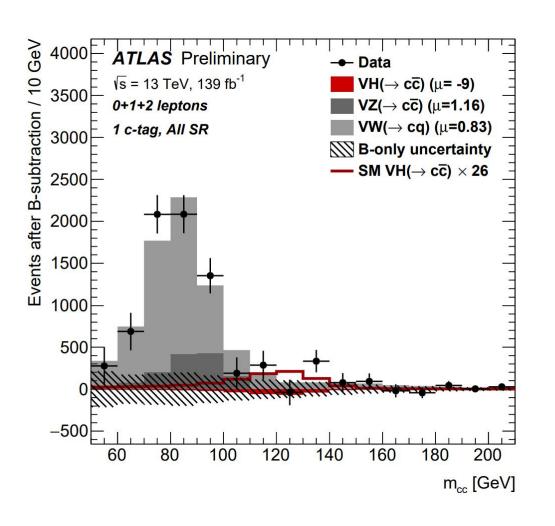


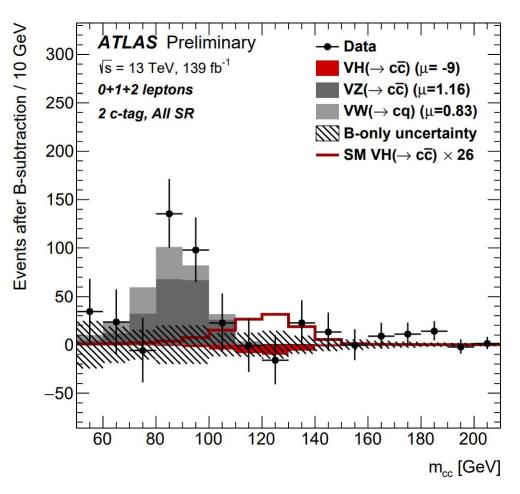
Object Selection

- Muon and electron
 - 2Lep channel: 81<m(II)<101 GeV
 - diff. rate of fake lepton, 1Lep and 2Lep channels use diff. selection criteria
- Jet: anti-kt algorithm with radius parameter R=0.4
 - the two leading jets must be in detector central region for flavor tagging (b-veto && c-tag)
 - b-veto for rest of jets
- Missing transverse momentum
 - negative of the vector sum of the pT of jets, electrons, muons, hadronically-decaying tau, and "soft term"
- Additional cuts are applied to reduce backgrounds or define control-regions

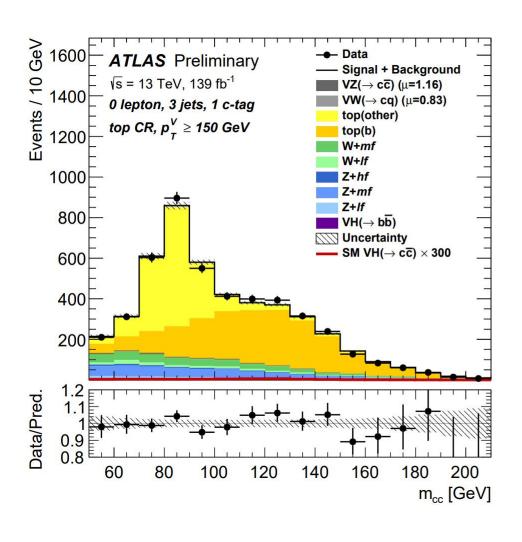

Performance

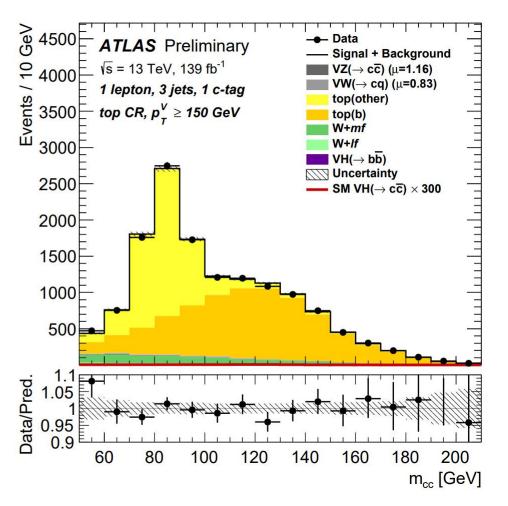
	c-tagging efficiency
c-jets	27%
b-jets	8%
light-jets	1.6%


ΔR_{cc}	75 GeV p _{TV} < 150 GeV	ΔR_{cc} cut = 2.3
cuts	150 GeV < p _{TV} < 250 GeV	ΔR_{cc} cut = 1.6
	{PTV} > 250 GeV	ΔR{cc} cut = 1.2


Event Categorization

- 0/1Lep: num(jets)<4, in order to reduce top backgrounds
- low pTV(75-150) is used in 2Lep channel, because of less QCD contamination




post-fit m(cc) distribution after subtracting bkg

top control region

Signal and bkg MC

	- The state of the	<u>ā</u>			
Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$qq \to VH$ $(H \to c\bar{c}/b\bar{b})$	Powheg-Box v2 [49, 50] + GoSam [59] + MiNLO [60, 61]	NNPDF3.0NLO [51]	Рутніа 8.212 [52]	AZNLO [53]	NNLO(QCD) +NLO(EW) [54–58]
$gg \to ZH \\ (H \to c\bar{c}/b\bar{b})$	Powheg-Box v2	NNPDF3.0NLO	Рутніа 8.212	AZNLO	NLO+NLL [62, 63]
$tar{t}$	Powheg-Box v2 [64]	NNPDF3.0NLO	Рутніа 8.230	A14 [65]	NNLO +NNLL [66–72]
t/s-channel single top	Powheg-Box v2 [73]	NNPDF3.0NLO	Рутніа 8.230	A14	NLO [74, 75]
Wt-channel single top	Powнеg-Box v2 [76]	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO [77, 78]
V+jets	SHERPA 2.2.1 [46–48]	NNPDF3.0NNLO [51]	SHERPA 2.2.1	Default	NNLO [79]
$qq \to VV$	Sherpa 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	Default	NLO
$gg \to VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

Signal region event selection

Common Selections				
Central jets Signal jet p_T c -jets b -jets Jets	≥ 2 ≥ 1 signal jet with $p_T > 45$ GeV 1 or 2 c -tagged signal jets No b -tagged non-signal jets 2, 3 (0- and 1-lepton), 2, \geq 3 (2-lepton)			
p_{T}^{V} regions	75–150 GeV (2-lepton) > 150 GeV			
ΔR (jet 1, jet 2)	75 < $p_{\rm T}^V$ < 150 GeV: $\Delta R \le 2.3$ 150 < $p_{\rm T}^V$ < 250 GeV: $\Delta R \le 1.6$ $p_{\rm T}^V$ > 250 GeV: $\Delta R \le 1.2$			
	0 Lepton			
Trigger Leptons $E_{\mathrm{T}}^{\mathrm{miss}}$ $p_{\mathrm{T}}^{\mathrm{miss}}$ $p_{\mathrm{T}}^{\mathrm{miss}}$ H_{T} $\min \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}) $ $ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, H) $ $ \Delta \phi(\mathrm{jet1}, \mathrm{jet2}) $ $ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) $	$E_{\rm T}^{\rm miss}$ 0 loose leptons > 150 GeV > 30 GeV > 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° < 140° < 90°			

	1 Lepton			
Trigger	e sub-channel: single electron μ sub-channel: $E_{\rm T}^{\rm miss}$			
Leptons	1 tight lepton and no additional loose leptons			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 30 GeV (e sub-channel)			
$E_{ m T}^{ m miss} \ m_{ m T}^W$	< 120 GeV			
	2 Lepton			
Trigger	single lepton			
Leptons	2 <i>loose</i> leptons			
	Same flavour, opposite-charge for $\mu\mu$			
m_{ll}	$81 < m_{ll} < 101 \text{ GeV}$			

bkg modelling systematic uncertainties

·	
$VH(\rightarrow b\bar{b})$	
$WH(\rightarrow b\bar{b})$ normalisation	27%
$ZH(\rightarrow b\bar{b})$ normalisation	25%
Diboson	
WW/ZZ/WZ acceptance	10/5/12%
p_{T}^{V} acceptance	4%
$N_{\rm jet}$ acceptance	7 - 11%
Z+jets	
Z+hf normalisation	Floating
Z+mf normalisation	Floating
Z+lf normalisation	Floating
Z + bb to $Z + cc$ ratio	20%
Z + bl to $Z + cl$ ratio	18%
Z + bc to $Z + cl$ ratio	6%
$p_{\rm T}^V$ acceptance	1 - 8%
$N_{\rm jet}$ acceptance	10 - 37%
High ΔR CR to SR	12 - 37%
0- to 2-lepton ratio	4 - 5%

W+jets		
W+hf normalisation	Floating	
W+mf normalisation	Floating	
W+lf normalisation	Floating	
W + bb to $W + cc$ ratio	4 - 10 %	
W + bl to $W + cl$ ratio	31 - 32 %	
W + bc to $W + cl$ ratio	31 - 33%	
$W \to \tau \nu(+c)$ to $W + cl$ ratio	11%	
$W \to \tau \nu(+b)$ to $W + cl$ ratio	27%	
$W \to \tau \nu(+l)$ to $W + l$ ratio	8%	
$N_{\rm jet}$ acceptance	8 - 14%	
High ΔR CR to SR	15 - 29%	
$W \rightarrow \tau \nu$ SR to high ΔR CR ratio	5 - 18%	
0- to 1-lepton ratio	1 - 6 %	
Top quark (0- and 1-lepton)		
top(b) normalisation	Floating	
top(other) normalisation	Floating	
$N_{\rm jet}$ acceptance	7 - 9%	
0- to 1-lepton ratio	4%	
SR/top CR acceptance $(t\bar{t})$	9%	
$SR/top\ CR\ acceptance\ (Wt)$	16%	
$Wt / t\bar{t}$ ratio	10%	
Top quark (2-lepton)		
Normalisation	Floating	
Multi-jet (1-lepton)		
Normalisation	20 - 100%	

signal strength uncertainty breakdown

Source of uncertainty	$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total	15.3	0.24	0.48
Statistical	10.0	0.11	0.32
Systematics	11.5	0.21	0.36
Statistical uncertainties			
Data statistics only	7.8	0.05	0.23
Floating normalisations	5.1	0.09	0.22
Theoretical and modelling uncertainties			
$VH(\to c\bar{c})$	2.1	< 0.01	0.01
Z+jets	7.0	0.05	0.17
Top-quark	3.9	0.13	0.09
W+jets	3.0	0.05	0.11
Diboson	1.0	0.09	0.12
$VH(\to b\bar{b})$	0.8	< 0.01	0.01
Multi-Jet	1.0	0.03	0.02
Simulation statistics	4.2	0.09	0.13

Experimental uncertainties				
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{ m T}^{ m miss}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
Flavour tagging	c-jets	1.6	0.05	0.16
	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth-flavour tagging	ΔR correction	3.3	0.03	0.10
	Residual non-closure	1.7	0.03	0.10