# Lepton Flavor Violating Mixings at 2-Loop from the S-Matrix 

Mehmet Asım Gümüş

in collaboration with
Joan Elias-Miro, Clara Fernandez, Alex Pomarol

## Some Numbers

- No LFV at tree-level in Standard Model.
$\operatorname{Br}(\mu \rightarrow e \gamma) \approx 10^{-54}$ with neutrino oscillations.
$-Z$ and $H \rightarrow \mu e @ L H C$ has probed $\Lambda_{\text {New }}$ Physics $\gtrsim 5-10 \mathrm{TeV}$
Current bound $\mathrm{Br}<\mathrm{eV}(\mathrm{MEG}) \quad \mu \rightarrow$ eee (MuBe)
Future bound $\mathrm{Br}<6 \times 10^{-14} \mathrm{Br}<10^{-16} \Longleftarrow \times 4$ orders! Current scale $\wedge \gtrsim 800 \mathrm{TeV} \quad \wedge \gtrsim 100 \mathrm{TeV}$ Future scale $\wedge \gtrsim 1300 \mathrm{TeV} \quad \wedge \gtrsim 1000 \mathrm{TeV}$
- Scales above are for Wilson coefficients $c_{i}^{(6)} \sim 1$.

With 2-loop suppression $c_{i} \rightarrow c_{i} /\left(16 \pi^{2}\right)^{2}$ and $\Lambda \rightarrow \Lambda /\left(16 \pi^{2}\right) \gtrsim 6 \mathrm{TeV}$.

## LFV Mixing Picture

Renormalization relations between different groups of dimension-6 SMEFT operators:

$\bullet\langle\cdot\rangle$ and $[\cdot]$ are spinor-helicity brackets labeling helicity structure of minimal form factors. - All arrows above are calculated in the literature, except for the highlighted mixing going from current ${ }^{2}$ operators into dipole operators, which starts at 2-loop.

- An interesting case: When our 2-loop contribution becomes as important as 1 -loop ones. See the Results section for more.


## Spinor-Helicity Formalism

- $P_{\mu} \longrightarrow \mathbf{P}=P_{\mu} \sigma^{\mu}$ with $\sigma^{\mu}=\left(1, \sigma^{i}\right)$
- Lorentz invariant: $P_{\mu} P^{\mu}=\operatorname{det}\left(P_{\mu} \sigma^{\mu}\right)$
- For a massless particle $\operatorname{det}(\mathbf{P})=0$.

P is a rank-1 complex matrix.

$$
P_{\mu} \sigma^{\mu}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}} \equiv|P\rangle_{\alpha}\left[\left.P\right|_{\dot{\alpha}}\right.
$$

where $\lambda, \tilde{\lambda}$ are left- and right-handed Weyl spinors.

- Momentum preserving rotations (little group transformation)
$\lambda \rightarrow t \lambda$ and $\tilde{\lambda} \rightarrow t^{-1} \tilde{\lambda}$ for a $t \in \mathbb{C}$.

Some Amplitude Examples
. These are all tree-level and ushell BCFW recursion relations over smaller amples. It is useful to think these also as building blocks

$$
\begin{aligned}
& \mathcal{A}\left(1^{-} \psi^{2} \psi^{+} 3 \bar{\gamma}\right)=\tilde{e}_{\psi} \frac{[23]^{2}}{[12]} \quad \mathcal{A}\left(1_{\psi}^{-} \psi^{2} \psi^{+}-4^{+} x\right)=-\tilde{e}_{\psi} \psi^{\tilde{e}} \frac{[24]^{2}}{[12][34]} \\
& \mathcal{A}\left(1-\bar{\psi}^{2} \psi^{+} 3^{-} 4^{4}+x_{x}^{-}\right)=\tilde{e}_{\psi} \tilde{e}_{x}^{2} \frac{[24]^{2}}{[35][45][12]}+\tilde{e}_{\psi}^{2} \tilde{e}_{x} \frac{[24]^{2}}{[15][25][34]}
\end{aligned}
$$

## References

1. EFT anomalous dimensions from S-Matrix, Elias-Miro, Ingoldby, Riembau, arxiv:2005.06983
2. Renormalization Group Coefficients and the S-Matrix, Caron-Huot, Wilhelm, arxiv:1607.06448
3. Renormalization of Higher-Dimensional Operators from On-shell Amplitudes, Baratella, Fernandez, Pomarol, arxiv:2005.07129
4. Structure of two-loop SMEFT anomalous dimensions via on-shell methods, Bern, Parra-Martinez, Eric Sawyer, arxiv:2005.12917
5. Renormalization Group Evolution from On-shell SMEFT, Jiang, Ma, Shu, arxiv:2005.10261

## Useful Formulas to Cut \&r Sew

We only use the following physical quantities to calculate anomalous dimension matrix $\gamma_{i j}$.

$$
\begin{aligned}
F_{i}[12 \ldots ; \mu] & ={ }_{\text {out }}\left\langle p_{1}, p_{2}, \ldots\right| \mathcal{O}_{i}|0\rangle_{\text {in }} \\
\mathcal{A}(12 \mid 34) & ={ }_{\text {out }}\left\langle p_{1}, p_{2}, \ldots \mid p_{3}, p_{4}, \ldots\right\rangle_{\text {in }} \\
& =\left\langle p_{1}, p_{2}, \ldots\right| \mathcal{M}\left|p_{3}, p_{4}, \ldots\right\rangle \\
\mu \partial_{\mu} F_{i} & =\left(v_{i j}\right)\left(F_{j}\right)
\end{aligned}
$$

form factor
scattering amplitudes

RG equations

There is a connection between on-shell S matrix and renormalization group ( $\mathrm{RG}_{1}$ ) [2].
CHW Formula 1 (exact)

$$
\begin{equation*}
e^{-i \pi D} F^{*}=F=S F^{*} \quad \text { with } \quad D=-\mu \partial_{\mu} \tag{1}
\end{equation*}
$$

Extracting the interacting part of $S$ matrix as $\mathcal{M}$ and expanding in couplings:

## CHW Formula 2 (perturbative)

$$
\underbrace{\langle\vec{n}| \mathcal{O}_{j}|0\rangle^{(0)}}_{\text {minimal FF }} \cdot \underbrace{\gamma_{j i}^{(1)}}_{\text {leading anomalous dim. }}=-\frac{1}{\pi} \sum_{\vec{m}} \underbrace{\langle\vec{n}| \mathcal{M}|\vec{m}\rangle^{(0)}}_{\text {tree-level amplitude }} \cdot \underbrace{\langle\vec{m}| \mathcal{O}_{i}|0\rangle^{(0)}}_{\text {minimal FF }}
$$

A very efficient way to calculate anomalous dimensions in an EFT setting, by utilizing on-shell information of subdiagrams with smaller number of loops. See the ref.s: $[1,3,4,5]$.

## Let's Do the Action

Dipoles start at 1-loop first



$$
=\int d \operatorname{LIPS}_{x, y} \mathcal{A}\left(2^{-} 4^{-} \mid x y^{+}\right) \cdot F_{i}\left(x y^{+} 1^{-} 3\right)=0
$$

Then there are the following groups 2-loop diagrams:

- Add a top-loop in the Higgs line
- Add a vertex of quartic coupling $-\lambda\left(H^{\dagger} H\right)^{2}$.



## Results

Anomalous dimensions we have got using this method:

$$
\begin{aligned}
\mu \partial_{\mu}\binom{F_{e B}}{F_{e W}} & =\frac{N_{C} Y_{t}^{2}}{\left(16 \pi^{2}\right)^{2}}\left[\begin{array}{ccc}
-Y_{\mu}\left(e_{\mu R}+2 e_{h}\right) & -\frac{3}{4} Y_{\mu}\left(e_{\mu_{R}}+2 e_{h}\right) & -Y_{e}\left(e_{e R}-e_{h}\right) \\
+Y_{\mu}(2 g) & -\frac{1}{4} Y_{\mu}(2 g) & +Y_{e}(g)
\end{array}\right]\left(\begin{array}{c}
F_{H l 1} \\
F_{H l 3} \\
F_{H e}
\end{array}\right) \\
& +\frac{\lambda}{\left(16 \pi^{2}\right)^{2}}\left[\begin{array}{ccc}
6 Y_{\mu} e_{h} & \frac{6}{4} Y_{\mu} e_{h} & 6 Y_{e} e_{h} \\
2 Y_{\mu} g & \frac{6}{4} Y_{\mu} g & 2 Y_{e} g
\end{array}\right]\left(\begin{array}{c}
F_{H I 1} \\
F_{H I 3} \\
F_{H e}
\end{array}\right)
\end{aligned}
$$

where $e_{i}$ 's are hypercharges and $Y_{i}$ 's are Yukawa couplings.

Interestingly, it seems quite easy to come up with models (e.g. adding an extra heavy fermion singlet) where all 1-loop arrows in LFV Mixing Picture are zero and these 2-loop anomalous dimensions provide the leading effect!

## with

$\mathcal{O}_{H 11}=\left(H^{i} i \overparen{o}_{\mu} H\right)\left(\bar{E}_{L} \mu^{\mu} M_{L}\right)$ $\mathcal{O}_{\mathrm{H} 3}=\left(H^{i} \stackrel{i}{\mu}^{\partial_{\mu}} \tau^{a} H\right)\left(\bar{E}_{L} \nu^{\mu} \tau^{a} M_{L}\right)$ $\mathcal{O}_{\mathrm{He}}=\left(H^{\Uparrow} i \overleftrightarrow{\partial}_{\mu} H\right)\left(\bar{e}_{R} \nu^{\mu} \mu_{R}\right)$ $\mathcal{O}_{\mathrm{e}}=\left(\overline{E_{L}} \sigma^{\mu \nu} \mu_{R}\right) H B_{\mu \nu}$ $\mathcal{O}_{\mathrm{eW}}=\left(\bar{E}_{L} \sigma^{\mu \nu} \mu_{R}\right) \tau^{a} H W_{\mu \nu}^{a}$

