¹Oklahoma State University ² University of Pittsburgh

Abstract

• Top Yukawa y_t , at O(1), is the strongest interaction of the Higgs boson in SM and hence the most sensitive to BSM physics.

• Current measurements are at EW scale, $Q \sim v_{EW}$, and BSM effects scale as $(Q/\Lambda)^{n>0}$, $\Lambda = NP$ scale. • NP effects can be enhanced by exploring top Yukawa at high scales.

• In this work we **directly probe Higgs-top** coupling at high scales using on-shell Higgs production with high p_{Th} .

• We look at the pp -> tth channel, where at high scales we can simultaneously enhance NP effects and suppress backgrounds.

• Sensitivity to new physics is parametrized in terms of the **EFT framework**, and a **non-local**

Higgs-top coupling form-factor.

EFT Operators

We focus on two dim = 6 operators that contribute to the process:

$\mathcal{O}_{t\phi} = (H^{\dagger}H)(\bar{Q}t)\tilde{H} + \text{h.c.}$

which simply rescales the SM top Yukawa coupling and

 $\mathcal{O}_{tG} = ig_s (\bar{Q} \tau^{\mu\nu} T_A t) \tilde{H} G^A_{\mu\nu} + \text{h.c.}$

the chromo-dipole moment which modifies the gtt vertx and introduces new vertices ggtt, gtth, and ggtth.

^ arXiv: 2106.00018 *rmammen@okstate.edu

	$c_i/\Lambda^2 [{ m TeV}^{-2}]$	$\Lambda/\sqrt{c_i}$ [TeV]
	$95\%~{\rm CL}$ range	BSM scale
ar)	[-0.11, 0.12]	2.9
$\operatorname{ratic})$	[-0.13, 0.08]	2.8
ar)	[-1.04, 1.00]	1.0
$\operatorname{ratic})$	[-0.97, 1.04]	1.0
	*	2.1
	*	2.7