
Data and methods
• 43 Kinematic Variables obtained from Monte Carlo Simulation of 𝑝𝑝

collision.

Conclusions
q Adopting kinematic variables from 

similar channels and training machine
learning models increased the signal 
significance,

q BDT algorithm performed better than
DNN algorithm for a  same number of 
input kinematic variables.
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Abstract
A study of optimization of signal sensitivity in the search
for the Di-Higgs event in the ATLAS experiment is
presented where one of the Higgs bosons decays via the
𝐻 → 𝑏$𝑏 channel and the other via 𝐻 → 𝑊!𝑊" with
𝑏$𝑏𝑙𝜈𝑞𝑞 as the final state. Large irreducible background
contamination from 𝑡 ̅𝑡 decay significantly decreases the
signal sensitivity in the Di-Higgs search. We employ
ROOT's built-in Multivariate analysis tool (TMVA) to train
new physics-motivated variables along with currently
trained variables. An increment in the rejection of 𝑡 ̅𝑡
background while keeping the signal efficiency high is
observed.

Introduction: Di-Higgs
What is Di-Higgs?
Ø Simply a pair of Higgs boson

formed in high energy collision!
Why do we care about Di-Higgs?
Ø One of the consequence of the Brout–Englert–
Higgs (BEH) mechanism in the Standard Model
(SM) is that it requires the self-coupling of the
Higgs boson. And we have yet to verify this
experimentally!

q Studying Di-Higgs production at the ATLAS 
experiment can help us probe the Higgs self-
coupling.

q Measuring the Higgs self-coupling will in turn 
help in reconstructing the Higgs Potential.
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Figure 1. Shape of the SM Higgs Potential

Di-Higgs production at the LHC

More than 90% of SM Di-Higgs is produced via 𝑔𝑔𝐹, which is
only accounted for in this analysis. There are two ways in
which Di-Higgs is formed from 𝑔𝑔𝐹, as shown in figure 2.
Their amplitudes interfere destructively, resulting to a
production cross-section of ≈ 31 fb at 𝑠 =13 TeV [1] .

Figure 3: Di-Higgs decaying to 𝑏#𝑏𝑙𝜈𝑞𝑞 (left), and 𝑡 ̅𝑡 decaying to 𝑏#𝑏𝑙𝜈𝑞𝑞 (right), making the background 
irreducible.

Project description:
• Increase the discrimination of the background from 

signal for MC simulated data based on the signal 
significance, defined as !

!"#

How?
• Introduce new kinematic variables, train machine 

learning algorithms (BDT and DNN) as implemented in 
ROOT’s TMVA.

Di-Higgs Signal and background (𝒃"𝒃 𝑾"𝑾#)

Di-Higgs Signal:
𝑝𝑝 → 𝐻𝐻 → 𝑏(𝑏 𝑊"𝑊# → 𝑏 ̅𝑏𝑙𝜈𝑞𝑞

Background: (𝑡 ̅𝑡 , 𝑡 ̅𝑡 𝑊, 𝑡 ̅𝑡 𝑍, 𝑊+jets, 𝑍 + jets...)
𝑡 ̅𝑡 → 𝑏*𝑏 𝑊!𝑊" → 𝑏 ̅𝑏𝑙𝜈𝑞𝑞

Ø Since 𝑡 ̅𝑡 accounts for > 80% of background, only its contribution is 
accounted for the machine learning modelling. 

Machine Learning methods

o Deep Neural Network (DNN) algorithm,
o Boosted Decision Tree (BDT) algorithm

§ Many decision trees are trained together and 
integrated to form a “forest”.

§ Several weak classifiers are amalgamated to 
construct a strong classifier.

...

...

Results
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Figure 2. Feynman diagrams showing the production of SM Di-Higgs 
through gluon-gluon fusion. The figure in the top has the Higgs trilinear 

self-coupling, whereas the figure in bottom does not.

Production 
Mode

Cross Section

𝑔𝑔𝑓 − ℎℎ ~33 fb
𝑉𝑉𝐹 − ℎℎ ~ 2 fb
ℎℎ𝑍 − ℎℎ ~0.4 fb
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Figure 4: Signal Significance peaked at 38.2819, and 36.1466 for 43 BDT trained kinematic 
variables (left) and DNN trained variables (right) for 4620 signal and 1120000 background events.

Figure 5: Comparison of performance of BDT (left) and DNN (right) performance on 
previously trained variables and (previously trained variables + new Kinematic variables) .

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGHH

