Jan Steggemann – Lecture Questions

Questions marked in green were answered during the Q&A session. Original questions listed without correction for grammar/spelling. Where a slide number was given it is shown. For answers to questions already addressed at live Q&A please check the ZOOM recording.

Q1 (slide 12)	Could you explain what tan(beta) is?
Q2	Are there searches for BSM Higgs in the di-Higgs final state?
Q3 (slide 16)	Is there an easy way to understand why Z-> tau tau goes up to such high mass?
Q4 (slide 21)	CMS Att search had slight excess near threshold in 2018. Anything learned specially resulted in an update for this published result ? What's the prospect for further updates beyond 35 fb^-1 ?
Q5 (slide 40)	Are these plots independent of the model?
Q6	For h->invisible searches, what's the current view of systematic floor that may be difficult to go below ?
Answer to Q6:	=> The h125->invisible searches will remain statistically limited at the HL-LHC, as can for

example be seen in the HL-LHC projections https://e-publishing.cern.ch/index.php/CYRM/article/view/952. One of the reasons is that the main backgrounds are estimated from sidebands, and the related systematic uncertainties are also reduced with an increase in integrated luminosity. For a possible future very high energy hadron collider like fcc-hh, it appears well possible to achieve constraints that are even much tighter than the branching fraction to neutrinos: https://link.springer.com/article/10.1007%2FJHEP01%282020%29139