

THE HIGGS AS A WINDOW ONTO PHYSICS BEYOND THE STANDARD MODEL (I)

Jessie Shelton

Illinois Center for the Advanced Studies of the Universe, UIUC SLAC Summer Institute, August 2021

- Structure of SM gauge interactions limits the total SM singlet operators that one can construct
 - > \mathcal{L}_{SM} : $\bar{f}\gamma^{\mu}D_{\mu}f$, $\bar{Q}_{L}Hd_{R}$, ...
 - > Currents: $\bar{f}_i \gamma^{\mu} f_i$
 - > Neutrino portal: HL_L
 - > Hypercharge portal: $B_{\mu\nu}$
 - ► Higgs portal, $|H|^2$

- Higgs is thus particularly sensitive window onto to new physics
 - Quantum sensitivity to new physics: hierarchy problem

see lecture by Nate Craig

 Effective field theory: leading place in SM where we may expect to see evidence of SM singlet new physics coupling to the SM

 $|\mathcal{M}|^2 \propto \Lambda^{-2(d-4)}$

 $\frac{1}{\Lambda d-4}\mathcal{O}_{BSM}\mathcal{O}_{SM}$

► Practically: Higgs portal has enhanced accidental sensitivity for light new physics ($< m_h/2$): suppressed SM decay modes

 $\Gamma_h(125 \text{ GeV}) = 4.1 \text{ MeV}$

- ► The LHC as a Higgs factory
 - ► Higgs production cross-section at 13 TeV: ~50 pb
 - Integrated luminosity, ~35/fb (expect more public results to come soon!)
 - \rightarrow 10⁶ Higgs bosons served
 - ➤ If: reasonable reconstruction efficiency, good S/B: statistics for branching fractions ~10⁻⁵
 - ► this is like the kinematic limit: best possible reach
 - But getting to this limit is often challenging: Higgs is light

EXOTIC HIGGS DECAYS

► Easy vs hard final states:

For physics heavier than m_h/2, life is much harder at LHC (gg pdfs, large backgrounds)
 see lectures by Marumi Kado

at e+e-, deviations in Higgs properties may be easier to pin down

WHY NEW PHYSICS?

► Why SM singlet new physics near the weak scale?

- co-responsible for generating it
- ► stabilize it
- thermal dark matter
- ► ...why not?
- these essential motivations have not changed much, but the specific models and their resulting signatures have

SOME THERMAL RELIC NUMEROLOGY

- ► Many (many, many) ideas for particle DM
- best motivation for DM with terrestrially accessible mass scales and interactions:
 - ► a particularly simple class of models: WIMPs and their relatives
 - these particles are thermal relics: once a part of hot, dense plasma in the early universe, then left equilibrium as universe expanded and cooled
- equilibrium number densities:
 - ► relativistic: $n_i \propto g_i T^3$

> non-relativistic: $n_i \propto g_i T^3 \left(\frac{m}{T}\right)^{3/2} e^{-m/T}$

SOME THERMAL RELIC NUMEROLOGY

► Thermal freezeout:

SOME THERMAL RELIC NUMEROLOGY

Estimate when freezeout happens:

 $n\langle \sigma v\rangle\approx H$

scalar singlet model:

unimportant for

Indirect detection:

Direct detection:

s-wave component of annihilation cross-section means appreciable indirect detection signals in DM-rich environments today

► Collider production:

Indirect detection:

Direct detection:

► Collider production:

s-wave component of annihilation cross-section means appreciable indirect detection signals in DM-rich environments today

DM-nucleon cross-section is both spin- and velocity-independent: unsuppressed coherent nuclear scattering

Indirect detection:

Direct detection:

s-wave component of annihilation cross-section means appreciable indirect detection signals in DM-rich environments today

DM-nucleon cross-section is both spin- and velocity-independent: unsuppressed coherent nuclear scattering

► Collider production:

Sensitivity depends on whether or not Higgs can decay into DM pairs

► Collected constraints on minimal HPDM:

[Hardy (2018)]

RESONANT REGIME

> Finely-tuned viable region near $m_h/2$:

next generation direct detection (indirect detection)

[Binder, Bringmann, Gustafsson, Hryczuk (2017)]

NON-MINIMAL COSMOLOGY?

Early matter-dominated era: dilute DM abundance

- entropy dump depends on properties of decaying metastable field
 - parametrically separate DM-Higgs coupling from present-day relic abundance

► Global symmetry to suppress DD cross section:

 $S \to \Phi = Se^{ia/f_a}$

- ► leading DD cross-section at one loop
- ► Higgs decays, ID still constraining at lower DM masses
- signals, constraints depend on properties of new heavy BSM scalar S

- Introducing new mediators gives new flexibility in how DM talks to the SM
 - Higgs-mixed scalar: same issues as minimal HPDM

- Introducing new mediators gives new flexibility in how DM talks to the SM
 - Higgs-mixed scalar: same issues as minimal HPDM
 - pseudo-scalar: parametrically suppress DD signal, nuclear cross-section is velocity-suppressed and spindependent (fermionic DM)
 - ► UV-complete $a\bar{f}\gamma^5 f$?
 - ► simple: mix with A⁰ in 2HDM model

see lectures by Nausheen Shah

► 2HDM+a:

[Ipek, McKeen, Nelson (2014)]

[Robens (2021)]

Secluded annihilations:

- Astrophysical signatures of WIMPy DM more or less unchanged
- terrestrial signatures parametrically suppressed

- thermalization floor: SM-mediator couplings large enough for single temperature to describe the whole system
 - Higgs-mixed scalar mediator
 - DD cross-section depends on mediator mass

[Evans, Gori, JS (2017)]

A LIGHT HIGGS-MIXED SCALAR

In direct production probes different combination of model couplings than on-shell Higgs decays:

[Evans, Gori, JS (2017)]

FIRST-ORDER PHASE TRANSITIONS

► In SM, EW phase transition is a cross-over

- Strongly first-order phase transitions:
 - necessary ingredient for electroweak baryogenesis
 - stochastic GW background
 - require BSM physics not far from EW scale

FIRST-ORDER PHASE TRANSITIONS

- New physics that drives EWPT first order must generically be fairly strongly coupled to Higgs
 - Iarge exotic branching ratios when decays are kinematically possible; narrow sliver of parameter space still open
 - most parameter space has heavy new physics: good prospects at future colliders

► potential for a general real singlet extension of SM:

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$
$$+ b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

- ► Z_2 symmetry $S \rightarrow -S$: S is stable
- General case: S decays through Higgs mixing

► potential for a general real singlet extension of SM:

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$\underbrace{\mathcal{O}(\theta)}_{(\theta)} + \frac{b_{1}S}{2} + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$\underbrace{\mathcal{O}(\theta)}_{-\frac{1}{2}a_{2}v^{2} + m_{s}^{2} + \mathcal{O}(\theta^{2})}$$

► Z_2 symmetry $S \rightarrow -S$: S is stable

General case: S decays through Higgs mixing

> potential for a general real singlet extension of SM:

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

► Z_2 symmetry $S \rightarrow -S$: S is stable

General case: S decays through Higgs mixing

> potential for a general real singlet extension of SM:

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$V = -\mu^{2} |H|^{2} + \lambda |H|^{4} + \frac{1}{2}a_{1} |H|^{2} S + \frac{1}{2}a_{2} |H|^{2} S^{2}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

$$(\theta) + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

- ► Z_2 symmetry $S \rightarrow -S$: S is stable
- General case: S decays through Higgs mixing

SINGLET-ASSISTED PHASE TRANSITIONS

- ► First order: new cubic terms (tree or loop)
 - ► strongly first order: $\frac{v(T_*)}{T_*} \gtrsim 1$
 - but adding cubic terms in pure h direction results in unacceptable changes to SM-like Higgs properties

SINGLET-ASSISTED PHASE TRANSITIONS

TWO-STEP PHASE TRANSITION

Consistency conditions for this scenario:

- ► vacuum stability, $V(0, h_0, T = 0) < V(s_0, 0, T = 0)$
- ➤ singlet vacuum is a local minimum at T*

 $m_h^2(s_0, 0, T_*) > 0$

system is in singlet vacuum, not symmetry-preserving vacuum before transition to EW vacuum

 $V(s_0, 0, T > T_*) < V(0, 0, T > T_*)$

► EW vacuum is energetically preferred at critical temp T*

 $V(s_0, 0, T_*) > V(0, h_0, T_*)$

> phase transition successfully completes

MINIMUM BRANCHING RATIOS

need to say allowed by all exp searches (except exo H)

► With $\cos \theta \ll 1$, potential at $O(g^2)$, above condicional combined to give (semi-)analytical lower bound on a_2 :

[Kozaczuk, Ramsey-Musolf, JS]

VISIBLE SIGNALS OF FIRST-ORDER PHASE TRANSITIONS

► Visible decays:

 $|\cos \theta| = 0.01$

Low mass: more work needed (predictions, sensitivities)

FIRST-ORDER PHASE TRANSITIONS AND EXO H DECAYS

► Invisible decays:

FIRST-ORDER PHASE TRANSITIONS AND HEAVY SCALARS

► Heavier states:

[Curtin, Meade, Yu]