Higgs Precision Physics – Decays

A. Freitas
University of Pittsburgh

THE HIGGS STATE FAIR
SLAC SUMMER INSTITUTE, AUGUST 16-27, 2021
What does decay have to do with precision?
What does decay have to do with precision?

1. Intro: Higgs precision studies
2. SM prediction for Higgs decays
3. Higgs production at e^+e^- colliders
4. SM input parameters
5. Theory calculations
6. Beyond the SM
Higgs physics is entering the precision era:

Determination of Higgs couplings from Higgs production and decay:

<table>
<thead>
<tr>
<th>Higgs Decay</th>
<th>LHC* (2020)</th>
<th>HL-LHC*</th>
<th>CEPC</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h\gamma\gamma$</td>
<td>9%</td>
<td>1.8%</td>
<td>1.6%</td>
<td>1.5%</td>
</tr>
<tr>
<td>$h\tau\tau$</td>
<td>15%</td>
<td>1.9%</td>
<td>1.2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>$h\mu\mu$</td>
<td>–</td>
<td>4.3%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>hWW</td>
<td>9%</td>
<td>1.7%</td>
<td>1.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>hZZ</td>
<td>8%</td>
<td>1.5%</td>
<td>0.25%</td>
<td>0.15%</td>
</tr>
<tr>
<td>hgg</td>
<td>10%</td>
<td>2.5%</td>
<td>1.2%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

* assuming no exotic decays
New physics reach

Precision \equiv large mass scales

- Example: mixing with a heavy particle, $\theta \sim \frac{m_{SM}}{M}$

- Model-independent formulation through effective field theory (EFT)

→ lecture by V. Sanz

de Blas, Durieux, Grojean, Gu, Paul ’19
Access to Higgs interactions through production and decay

Most couplings only accessible in decays ($b, c, \tau, \mu, \gamma, Z$)

Decay ratios can reduce systematics, e.g.

$$\frac{\sigma[pp \rightarrow H \rightarrow \gamma\gamma]}{\sigma[pp \rightarrow H \rightarrow ZZ]}$$

$\mathcal{O}(\%)$ BSM effects \rightarrow need SM predictions with higher-order corrections
SM predictions for Higgs decays

Reviews: 1404.0319, 1906.05379

hbb: [HL-LHC: 7%, FCC-ee: 0.8%]

- $\mathcal{O}(\alpha_s^4)$ QCD corrections

 $21\% + 4\% + 0.2\% - 0.15\%$

 Baikov, Chetyrkin, Kühn '05

- $\mathcal{O}(\alpha)$ QED+EW, $< 0.5\%$

 Dabelstein, Hollik '92; Kniehl '92

- leading $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha\alpha_s)$ for large m_t

 $< 0.5\%$ (use for error estimate)

 Kwiatkowski, Steinhauser '94

 Butenschoen, Fugel, Kniehl '07

Current theory error: $\Delta_{\text{th}} < 0.4\%$

With full 2-loop: $\Delta_{\text{th}} \sim 0.2\%$

hττ: [HL-LHC: 3.8%, FCC-ee: 1.1%] → Similar, but no QCD
SM predictions for Higgs decays

\(h_{WW^*/hZZ^*} \): [HL-LHC: 3.4%, FCC-ee: 0.4%]

- \(m_H < 2m_W \) → one or both W/Z must be off-shell
- Need full process \(h \rightarrow 4f \)
- Differential distributions contain more info
 → S. Gori

 - complete \(\mathcal{O}(\alpha) + \mathcal{O}(\alpha_s) \) for \(h \rightarrow 4f \)
 → MC implementation for distributions
 Bredenstein, Denner, Dittmaier, Weber '06
 - leading \(\mathcal{O}(\alpha^2), \mathcal{O}(\alpha \alpha_s) \) and \(\mathcal{O}(\alpha \alpha_s^2) \) for large \(m_t \)
 → Small (0.2%) effect
 Kniehl, Spira '95; Kniehl, Steinhauser '95; Djouadi, Gambino, Kniehl '97; Kniehl, Veretin '12

Theory error: \(\Delta_{th,EW} < 0.3\%, \Delta_{th,QCD} < 0.5\% \)

With NNLO final-state QCD corrections: \(\Delta_{th,QCD} < 0.1\% \)
SM predictions for Higgs decays

hWW*/hZZ*:

- Non-trivial effects in distributions
 - Bredenstein, Denner, Dittmaier, Weber ’06
 - Larger theory uncertainty?

- Non-perturbative color reconnection effects
 - No impact on decay rate, but on distributions
 - Difficult to model, currently done with MC programs such as PYTHIA/HERWIG
hWW*/hZZ*:

- Intermediate W/Z can become on-shell
 \[\rightarrow \text{regularize divergencies in } \frac{1}{p^2 - m_V^2} \quad (V = W, Z) \]

- One option: *complex mass scheme*
 \[m_V^2 \rightarrow \mu_V^2 \equiv m_V^2 - i m_V \Gamma'_V \] everywhere,
 incl. relations like
 \[g = \frac{e}{s_W} = \frac{e}{\sqrt{1-m_W^2/m_Z^2}} \]
 \[\text{Denner, Dittmaier, Roth, Wieders '05} \]
 \[\rightarrow \text{preserves gauge invariance, consistent to all orders} \]
 \[\frac{d\Gamma}{d(p^2)} \propto \frac{1}{(p^2 - m_V^2)^2 + m_V^2 \Gamma'_V} \]

- In experimental analyses:
 \[\frac{d\Gamma}{d(p^2)} \propto \frac{1}{(p^2 - M_V^2)^2 + p^4 M_V^2 / \Gamma'_V} \]
 \[m_Z = M_Z / \sqrt{1 + \Gamma_Z^2 / M_Z^2} \approx M_Z - 34 \text{ MeV} \]
 \[\Gamma'_Z = \Gamma_Z / \sqrt{1 + \Gamma_Z^2 / M_Z^2} \approx \Gamma_Z - 0.9 \text{ MeV} \]
SM predictions for Higgs decays

hgg: [HL-LHC: 5%, FCC-ee: 1.6%]

- Loop-induced process in the SM

\[
\Gamma[h \rightarrow gg] = \frac{y_t^2 \alpha_s^2 m_t^2}{4\pi^3 m_H} \left[1 + \left(1 - \frac{4m_t^2}{m_H^2}\right) \arcsin^2 \frac{m_H}{2m_t} \right]^2
\]

\[
\approx \frac{\alpha_s^2 m^3_H}{72\pi^3 v^2} \quad \left(m_H \ll 2m_t, \ y_t = \frac{\sqrt{2}}{v} m_t \right)
\]

For heavy BSM quark:

\[
\delta \Gamma[h \rightarrow gg] \approx \frac{y_h^2 \alpha_s^2 m_H^3}{144\pi^3 M_Q^2}
\]

- \(N^n\)LO corrections require \((n+1)\)-loop diagrams
 - \(O(\alpha_s)\) exact result
 - Use large \(m_t\) expansion, used for \(O(\alpha_s^2)\)
 \(\rightarrow\) fast convergence \((m_t^{-4} \text{ term is } \sim 1\% \text{ of } m_t^0 \text{ term})\)
 - \(O(\alpha_s^3)\) with low-energy theorem (equiv. to 1st term in large \(m_t\) exp.)

Djouadi, Graudenz, Spira, Zerwas ’95

Schreck, Steinhauser ’07

Baikov, Chetyrkin ’06
hgg:

- **Low-energy theorem:** for $m_t \to \infty$ top loop becomes effective hgg interaction:

 \[L_{\text{eff}} = \frac{C_{hg}}{v} h G_{\mu\nu} G_{\mu\nu} \]

 \[\Gamma[h \to gg] = \frac{2C_{hg}^2 m_H^3}{\pi v^2} \]

 \[\text{LO SM res.:} \quad C_{hg} = -\frac{\alpha_s}{12\pi} \]

 \[(1) \]

 \[(2) \]

 Gauge-invariant form:

 \[L_{\text{eff}} = \frac{C_{hg}}{v^2} (\phi^\dagger \phi) G_{\mu\nu} G_{\mu\nu}, \quad \phi = (G^+, \frac{v+h+G^0}{\sqrt{2}})^\top \]

 \[(3) \]

- **Higher orders:**
 - corrections to C_{hg} (zero external momentum)
 - corrections to (2) with effective hgg cpl.
SM predictions for Higgs decays

hgg:

- **EW corrections:**
 - Can use expansion or low-energy theorem for top-quark contributions

 Degrassi, Maltoni ’04

 - Direct 2-loop calculation for (dominant) light-quark contributions

 Aglietti, Bonciani, Degrassi, Vicini ’04; Degrassi, Maltoni ’04

QCD corrections: $65\% + 20\% + 2\%$

EW corrections: $\sim 5\%$

Theory error (dominated by QCD): $\Delta_{th} \approx 3\%$

With $O(\alpha_s^4)$ in large m_t-limit (4-loop massless QCD diags.): $\Delta_{th} \approx 1\%$
SM predictions for Higgs decays

\[h\gamma\gamma: \quad [\text{HL-LHC: 3.6\%, FCC-ee: 3.0\%}] \]

- Top+W loop at LO
 - \(\mathcal{O}(\alpha_s^2) \) QCD corrections (with large \(m_t \) expansion)
 - Zheng, Wu ’90; Djouadi, Spira, v.d.Bij, Zerwas ’91
 - Dawson, Kauffman ’93; Maierhöfer, Marquard ’12
 - NLO EW
 - Aglietti, Bonciani, Degrassi, Vicini ’04; Degrassi, Maltoni ’04
 - Actis, Passarino, Sturm, Uccirati ’08

Theory error: \(\Delta_{\text{th}} < 1\% \)
Real vs. pseudo observables

- $\Gamma \to XX$ is not a real observable
- Effect of detector acceptance and isolation criteria, in particular for extra gluon (jet) and photon radiation
- Effect of selection cuts to reduce backgrounds
- Monte-Carlo tools needed to simulate these effects

Current LHC studies:
- rad. corrections in decay, only parton shower for γ, g emission; differential rates corrected (rewighted) with fixed-order results

More accurate procedure:
- Implement fixed-order rad. corr. in MC program, **matching** to avoid double counting with parton shower

Catani, Krauss, Kuhn, Webber ’01
Nason ’04; Frixione, Nason, Oleari ’07
Higgs production at e^+e^- colliders

- **hZ production**: dominant at $\sqrt{s} \sim 240$ GeV
- **WW fusion**: sub-dominant but useful for constraining h width Han, Liu, Sayre ’13
SM predictions for Higgs production

hZ production: [CEPC: 0.5%, FCC-ee: 0.3%]

- $\mathcal{O}(\alpha)$ corr. to hZ production and h, Z decay

 - $\Gamma_H/m_H \approx 4 \times 10^{-5}$, $\Gamma_Z/m_Z \approx 0.025$

 ⇒ include off-shell Z effects

 Technology for $\mathcal{O}(\alpha)$ corr. to $hf\bar{f}$ production available

 - $\mathcal{O}(\alpha\alpha_s)$ corrections

 Gong et al. ’16; Chen, Feng, Jia, Sang ’18

 Theory error: $\Delta_{th} \sim O(1\%)$

 With full 2-loop corrections for $ee \rightarrow HZ$:

 $\Delta_{th} \lesssim O(0.3\%)$
SM predictions for Higgs production

WW fusion:

- $\mathcal{O}(\alpha)$ corrections

Theory error: $\Delta_{\text{th}} \sim O(1\%)$?

Full NNLO calc. for $2 \rightarrow 3$ process is very challenging, but may not be needed

Belanger et al. '02; Denner, Dittmaier, Roth, Weber '03
SM predictions for Higgs decays need measured input parameters

Reviews: 1906.05379, 2012.11642

- M_Z, M_W: current precision $< 0.1\%$ \rightarrow negligible impact

- m_t: Most precise measurement at LHC: $\delta m_t \sim 0.3 \text{ GeV}$

Additional theory error from scheme translation Hoang, Plätzer, Samitz ’18
\rightarrow Total uncertainty $\delta m_t \sim 0.5 \text{ GeV}$
\rightarrow Negligible impact because m_t only appears in loops
SM predictions for Higgs decays need measured input parameters.

Reviews: 1906.05379, 2012.11642

- M_H: high precision important for $h \rightarrow WW^*, ZZ^*$

 amplitude $\propto \frac{1}{p_1^2 - m_V^2}$, \quad $p_1 \sim m_H - m_V$ (both V, V^* at rest)

 \[\Gamma_{VV^*} = \text{[energy]} \]

 \[\Rightarrow \Gamma_{VV^*} \propto \frac{[\text{energy}]^5}{|p_1^2 - m_V^2|^2} \sim \frac{m_H^5}{[(m_H - m_V)^2 - m_V^2]^4} \]

 Uncertainty δm_H \quad \Rightarrow \quad $\frac{\delta \Gamma_{VV^*}}{\Gamma_{VV^*}} = \frac{m_H - 6m_V}{m_H - 2m_V} \frac{\delta m_H}{m_H} \approx 10 \frac{\delta m_H}{m_H}$

 $\delta m_H = 0.2 \text{ GeV}$ \quad \Rightarrow \quad $\frac{\delta \Gamma_{VV^*}}{\Gamma_{VV^*}} = 1.6\%$

 CEPC/FCC-ee/ILC can achieve $\delta m_H \lesssim 20 \text{ MeV}$ \quad \Rightarrow \quad $\frac{\delta \Gamma_{VV^*}}{\Gamma_{VV^*}} \lesssim 0.2\%$
SM input parameters

• α_s: important for $h \rightarrow gg$ (also $h \rightarrow q\bar{q}$)

$$\delta \alpha_s = 0.001 \Rightarrow \frac{\delta \Gamma_{gg}}{\Gamma_{gg}} \approx 3\%$$

Methods for α_s determination:

• Most precise determination using Lattice QCD:
 $\alpha_s = 0.1184 \pm 0.0006$ HPQCD '10
 $\alpha_s = 0.1185 \pm 0.0008$ ALPHA '17
 $\alpha_s = 0.1179 \pm 0.0015$ Takaura et al. '18
 $\alpha_s = 0.1172 \pm 0.0011$ Zafeiropoulos et al. '19

→ Difficulty in evaluating systematics

• e^+e^- event shapes and DIS: $\alpha_s \sim 0.114$
 Alekhin, Blümlein, Moch '12; Abbatte et al. ’11; Gehrmann et al. ’13

→ Subject to sizeable non-pertubative power corrections
→ Systematic uncertainties in power corrections?
SM input parameters

\(\alpha_s \):

- Hadronic \(\tau \) decays: \(\alpha_s = 0.119 \pm 0.002 \) \hspace{1cm} PDG '18
 \(\rightarrow \) Non-perturbative uncertainties in OPE and from duality violation
 \hspace{1cm} Pich '14; Boito et al. '15,18

- Electroweak precision \((R_\ell = \Gamma_{Z}^{\text{had}}/\Gamma_{\ell}^{Z}) \):
 \(\alpha_s = 0.120 \pm 0.003 \) \hspace{1cm} PDG '18
 \(\rightarrow \) No (negligible) non-perturbative QCD effects
 FCC-ee: \(\delta R_\ell \sim 0.001 \)
 \hspace{1cm} \Rightarrow \hspace{1cm} \delta \alpha_s < 0.0001

Theory input: N\(^3\)LO EW corr. + leading N\(^4\)LO
 to keep \(\delta_{\text{th}} R_\ell \lesssim \delta_{\text{exp}} R_\ell \)

Caviat: \(R_\ell \) could be affected by new physics
SM input parameters

\begin{itemize}
\item \(\alpha_s\):
 \begin{itemize}
 \item \(R = \frac{\sigma[ee\rightarrow\text{had.}]}{\sigma[ee\rightarrow\mu\mu]} \) at lower \(\sqrt{s} \)
 \end{itemize}

 e.g. CLEO \((\sqrt{s} \sim 9 \text{ GeV})\): \(\alpha_s = 0.110 \pm 0.015\)

 Kühn, Steinhauser, Teubner '07

 \(\rightarrow\) dominated by \(s\)-channel photon, less room for new physics

 \(\rightarrow\) QCD still perturbative

 naive scaling to 50 \(\text{ab}^{-1}\) (BELLE-II): \(\delta\alpha_s \sim 0.0001\)

\item \(m_b, m_c\): From quarkonia spectra using Lattice QCD
 \(\delta m_b^{\overline{\text{MS}}} \sim 30 \text{ MeV}, \, \delta m_c^{\overline{\text{MS}}} \sim 25 \text{ MeV}\)

 LHC HXSWG '16

 \(\Rightarrow\) \(\frac{\delta\Gamma_{bb}}{\Gamma_{bb}} \approx 1.4\%, \, \frac{\delta\Gamma_{cc}}{\Gamma_{cc}} \approx 4.0\%\)

 \(\rightarrow\) estimated improvements \(\delta m_b^{\overline{\text{MS}}} \sim 13 \text{ MeV}, \, \delta m_b^{\overline{\text{MS}}} \sim 7 \text{ MeV}\)

 Lepage, Mackenzie, Peskin '14
\end{itemize}
Theory calculations

Theory uncertainties

- Theory error estimate is not well defined, ideally $\Delta_{\text{th}} \ll \Delta_{\text{exp}}$

- Common methods:
 - Count prefactors (α, N_c, N_f, ...)
 - Extrapolation of perturbative series
 e.g. assume $\frac{\Gamma_{\text{NNNLO}}}{\Gamma_{\text{NNLO}}} \sim \frac{\Gamma_{\text{NNLO}}}{\Gamma_{\text{NLO}}}$
 - Renormalization scale dependence
 (for $\overline{\text{MS}}$ renormalization, widely used for QCD)
 - Renormalization scheme dependence
 e.g. compare $\overline{\text{MS}}$ and OS renormalization
Experimental precision requires inclusion of multi-loop corrections in theory.

Integrals over loop momenta:

$$\int d^4q_1 d^4q_2 \, f(q_1, q_2, p_1, k_1, \ldots, m_1, m_2, \ldots)$$

Computer algebra tools:

- Generation of diagrams, $O(1000) - O(10000)$
- Lorentz and Dirac algebra
- Integral simplification (e.g. symmetries)

$\begin{cases} \text{not a limiting factor} \end{cases}$

Evaluation of loop integrals:

- Analytical
- Approximate (expansions)
- Numerical
Analytic calculations

- Mostly used for diagrams with few mass scales
- Reduce to **master integrals** with integration-by-parts and other identities

 Chetyrkin, Tkachov ’81; Gehrmann, Remiddi ’00; Laporta ’00; ...

Public programs:

 Reduze von Manteuffel, Studerus ’12
 FIRE Smirnov ’13,14
 LiteRed Lee ’13
 KIRA Maierhoefer, Usovitsch, Uwer ’17

 → Large need for computing time and memory

- Evaluate master integrals with differential equations or Mellin-Barnes rep.

 Kotikov ’91; Remiddi ’97; Smirnov ’00,01; Henn ’13; ...

 → Result in terms of Goncharov polylogs / multiple polylogs

 → Some problems need iterated elliptic integrals / elliptic multiple polylogs

 Broedel, Duhr, Dulat, Trancredi ’17,18
 Ablinger er al. ’17

 → Even more classes of functions needed in future?
Asymptotic expansions

- Exploit large mass/momentum ratios, e.g. \(\frac{M_Z^2}{m_t^2} \approx \frac{1}{4} \)
- Evaluate coeff. integrals analytically
- Fast numerical evaluation

→ Public programs:
 exp Harlander, Seidensticker, Steinhauser '97
 asy Pak, Smirnov '10

→ Possible limitations:
 - no appropriate mass/momentum ratios
 - bad convergence
 - impractical if too many mass/mom. scales
Challenge 1: presence of UV/IR divergencies

- Remove through subtraction terms
 \[
 \int d^4 q_1 d^4 q_2 (f - f_{\text{sub}}) + \int d^4 q_1 d^4 q_2 f_{\text{sub}}
 \]
 finite\hspace{1cm} \text{solve analytically}

- Remove through variable transformations:
 a) Sector decomposition
 Public programs: (py)\text{SecDec} \hspace{1cm} \text{Carter, Heinrich '10; Borowka et al. '12,15,17}
 \text{FIESTA} \hspace{1cm} \text{Smirnov, Tentyukov '08; Smirnov '13,15}

 b) Mellin-Barnes representations
 Public programs: \text{MB/MBresolve} \hspace{1cm} \text{Czakon '06; Smirnov, Smirnov '09}
 \text{AMBRE/MBnumerics} \hspace{1cm} \text{Gluza, Kajda, Riemann '07}
 \text{Dubovyk, Gluza, Riemann '15}
 \text{Usovitsch, Dubovyk, Riemann '18}
Challenge 2: stability and convergence

- Integration in momentum space: $4L$ dimensions ($L =$ # of loops)
- Integration in Feynman parameters: $P - 1$ dimensions ($P =$ # of propagators)

→ Multi-dim. integrals need large computing resources and converge slowly

- Variable transformations to avoid singularities and peaks

![Graphs showing variable transformations](image-url)
Loop calculations: Summary

Analytical techniques and expansions:
Complexity increases with ...
... more loops;
... more external particles;
... more different masses

Numerical techniques:
Complexity increases with ...
... more loops;
... more external particles;
... fewer masses
Deviations from SM predictions

"Kappa framework"

- Multiply Higgs Feynman rules with factor $\kappa_X \neq 1$:

$$
\begin{align*}
H - \rightarrow - h \rightarrow f & = - \frac{igm_f}{2m_w} \kappa_f \\
H - \rightarrow - W^+ & = igm_w g_{\mu \nu} \kappa_W
\end{align*}
$$

- breaks gauge-invariance
- in general not possible to compute EW corrections

Effective field theory framework

$$
\mathcal{L} = \mathcal{L}_{SM} + \sum_{d=5}^{\infty} \frac{1}{\Lambda^{d-4}} \sum_i c_i \mathcal{O}^{(d)}_i
$$

- Operators required to satisfy SM gauge invariance
- Valid description for energies $E \ll \Lambda$ ($\Lambda \sim$ mass of heavy particles)
- Leading contribution to Higgs physics: $d = 6$
- **SMEFT**: Higgs doublet as in SM
- **HEFT**: Higgs and Goldstone bosons treated independently

→ V. Sanz
Deviations from SM predictions

"Kappa framework"

- Multiply Higgs Feynman rules with factor $\kappa_X \neq 1$:

\[
 H \rightarrow f = -\frac{ig_{w} \kappa_f}{2m_{w}} \, K_f \\
 H \rightarrow W = ig_{w} g_{\mu} \kappa_{w}
\]

- breaks gauge-invariance
 → in general not possible to compute EW corrections

Effective field theory framework

\[
 \mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{d=5}^{\infty} \frac{1}{\Lambda^{d-4}} \sum_{i} c_{i} \mathcal{O}_{i}^{(d)}
\]

- Operators required to satisfy SM gauge invariance
- Valid description for energies $E \ll \Lambda$ ($\Lambda \sim$ mass of heavy particles)
- Leading contribution to Higgs physics: $d = 6$
- **SMEFT**: Higgs doublet as in SM
- **HEFT**: Higgs and Goldstone bosons treated independently

→ V. Sanz
No conclusive BSM evidence in Higgs physics
→ BSM effects are small
→ ignore rad. corr. to BSM contributions (?)

But some higher-order effects can be significant:

- Large SM QCD corrections to LO operator insertions:
 \[\delta_{QCD} \sim 20\% \]
 \[\delta_{QCD} \sim 50\ldots100\% \]
 → Practical calculations similar to SM

- New operators appearing in loops:
 e.g.

\[\begin{array}{c}
\text{H} \rightarrow W^+ b \\
\end{array} \]
Example 1: hgg operator in $h \rightarrow b\bar{b}$

\[
\frac{\delta \Gamma_{bb}}{\Gamma_{bb}} = C_F \frac{\alpha_s}{\pi} \frac{v^2}{\Lambda^2} c_{\phi G} \ln^2 \frac{m_b^2}{m_H^2} \approx 2.4 \frac{v^2}{\Lambda^2} c_{\phi G}
\]

[Note: $c_{\phi G}$ expected to be loop-induced]

Example 2: $ttbb$ operator in $h \rightarrow b\bar{b}$

\[
\frac{\delta \Gamma_{bb}}{\Gamma_{bb}} \approx 1.75 \frac{v^2}{\Lambda^2} c_{qtqb}^{(1)}
\]

[Note: $c_{qtqb}^{(1)}$ also makes a contribution to m_b, and fine-tuning arguments suggest it shouldn’t be large]
Example 3: dipole-type γ-top operator in $h \rightarrow \gamma\gamma$

$$\frac{\delta \Gamma_{bb}}{\Gamma_{bb}} \approx \mathcal{O}(10-20) \times \frac{v^2}{\Lambda^2} c_{tB}^{(1)}$$

[Note: c_{tB} expected to be loop-induced]
Backup slides
SMEFT operators in Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek ’10

<table>
<thead>
<tr>
<th>X^3</th>
<th>φ^6 and $\varphi^4 D^2$</th>
<th>$\psi^2 \varphi^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_G</td>
<td>Q_φ</td>
<td>$Q_{\varphi \varphi}$</td>
</tr>
<tr>
<td>$Q_{\tilde{G}}$</td>
<td>$(\varphi^\dagger \varphi)^3$</td>
<td>$(\varphi^\dagger \varphi)(\bar{l}_p e_r \varphi)$</td>
</tr>
<tr>
<td>Q_W</td>
<td>$Q_{\varphi \varphi}$</td>
<td>$Q_{u \varphi}$</td>
</tr>
<tr>
<td>$Q_{\tilde{W}}$</td>
<td>$(\varphi^\dagger \varphi)(\bar{q}_p u_r \tilde{\varphi})$</td>
<td>$Q_{d \varphi}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X^2 \varphi^2$</th>
<th>$\psi^2 X_\varphi$</th>
<th>$\psi^2 \varphi^2 D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_\varphi G$</td>
<td>Q_{eW}</td>
<td>$Q_{\varphi(1)}$</td>
</tr>
<tr>
<td>$Q_{\bar{G}}$</td>
<td>Q_{eB}</td>
<td>$Q_{\varphi(3)}$</td>
</tr>
<tr>
<td>Q_W</td>
<td>Q_{uG}</td>
<td>$Q_{\varphi e}$</td>
</tr>
<tr>
<td>$Q_{\bar{W}}$</td>
<td>Q_{uW}</td>
<td>$Q_{\varphi(1)}$</td>
</tr>
<tr>
<td>Q_B</td>
<td>Q_{uB}</td>
<td>$Q_{\varphi(3)}$</td>
</tr>
<tr>
<td>$Q_{\bar{B}}$</td>
<td>Q_{dG}</td>
<td>$Q_{\varphi u}$</td>
</tr>
<tr>
<td>$Q_{W B}$</td>
<td>Q_{dW}</td>
<td>$Q_{\varphi d}$</td>
</tr>
<tr>
<td>$Q_{\bar{W} B}$</td>
<td>Q_{dB}</td>
<td>$Q_{\varphi u d}$</td>
</tr>
</tbody>
</table>

* $\varphi^\dagger \varphi$ is the scalar product of two vectors φ. * $\bar{l}_p e_r \varphi$ and $\bar{q}_p u_r \tilde{\varphi}$ are the products of quark and lepton fields with their respective Pauli matrices. * $\bar{q}_p d_r \varphi$ and $\bar{q}_p u_r d_r \varphi$ are higher-order interactions involving multiple quark fields.
SMEFT operators in Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek ’10

<table>
<thead>
<tr>
<th>((\bar{L}L)(\bar{L}L))</th>
<th>((\bar{R}R)(\bar{R}R))</th>
<th>((\bar{L}L)(\bar{R}R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{lt})</td>
<td>((\bar{l}p \gamma\mu l_r)(\bar{l}_s \gamma^\mu l_t))</td>
<td>(Q_{le})</td>
</tr>
<tr>
<td>(Q_{qq}^{(1)})</td>
<td>((\bar{q}p \gamma\mu q_r)(\bar{q}_s \gamma^\mu q_t))</td>
<td>(Q_{lu})</td>
</tr>
<tr>
<td>(Q_{qq}^{(3)})</td>
<td>((\bar{q}p \gamma\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t))</td>
<td>(Q_{ld})</td>
</tr>
<tr>
<td>(Q_{lq}^{(1)})</td>
<td>((\bar{l}p \gamma\mu l_r)(\bar{q}_s \gamma^\mu q_t))</td>
<td>(Q_{qe})</td>
</tr>
<tr>
<td>(Q_{lq}^{(3)})</td>
<td>((\bar{l}p \gamma\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t))</td>
<td>(Q_{qu}^{(1)})</td>
</tr>
<tr>
<td>(Q_{ud}^{(1)})</td>
<td>(\bar{u}p \gamma\mu u_r)(\bar{d}_s \gamma^\mu d_t))</td>
<td>(Q_{qu}^{(8)})</td>
</tr>
<tr>
<td>(Q_{jadq}^{(8)})</td>
<td>(\bar{u}p \gamma\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t))</td>
<td>(Q_{qd}^{(1)})</td>
</tr>
<tr>
<td>(Q_{jadq}^{(1)})</td>
<td>(\bar{u}p \gamma\mu u_r)(\bar{d}_s \gamma^\mu d_t))</td>
<td>(Q_{qd}^{(8)})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((L\bar{R})(\bar{R}L)) and ((L\bar{R})(\bar{L}R))</th>
<th>(\mathcal{B})-violating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{ledq})</td>
<td>((\bar{l}p \gamma\mu e_r)(\bar{d}_s \gamma^\mu l_t))</td>
</tr>
<tr>
<td>(Q_{quqd}^{(1)})</td>
<td>(\bar{q}p^j u_r \varepsilon{jk}(\bar{q}_s^k d_t))</td>
</tr>
<tr>
<td>(Q_{quqd}^{(8)})</td>
<td>(\bar{q}p^j T^A u_r \varepsilon{jk}(\bar{q}_s^k T^A d_t))</td>
</tr>
<tr>
<td>(Q_{lequ}^{(1)})</td>
<td>(\bar{l}p \gamma\mu e_r \varepsilon_{jk}(\bar{q}_s^k u_t))</td>
</tr>
<tr>
<td>(Q_{lequ}^{(3)})</td>
<td>(\bar{l}p \sigma{\mu\nu} e_r \varepsilon_{jk}(\bar{q}_s^k \sigma^{\mu\nu} u_t))</td>
</tr>
</tbody>
</table>