
Differentiable Ray Tracing Simulator

Maxime Vandegar, Michael Kagan

January 2021



2

Plan

• Build a simulator of the MAGIS optical system.
• Insights: 
• Early insights about the system.

- e.g. what is the impact of noise, quantum efficiency, …
• Ability to test different systems.

- e.g. different lenses, numerical apertures, …
• Inference:
• High-fidelity model of the projection operator that can be 

used at inference time.
- Α(𝑥) = 𝑏.
• End-to-end differentiable.



3

Approach

• Sample light rays from the atom cloud and model their 
interactions with the system (physically based rendering).



4

Approach

• Sample light rays from the atom cloud and model their 
interactions with the system (physically based rendering).



5

Next steps

1. Finish the extension of the simulator to 3D.
2. Complexify the system (noise, quantum efficiency, …).
3. 3D reconstruction & design of experiments.



Backup slides



7

JAX

• Written in JAX (Autograd & XLA).
• Autograd: 

- Automatically differentiates native Python and Numpy code.
- Main purpose: gradient-based optimization.
• XLA:

- Compiles and runs programs on GPUs and TPUs (fused 
operations).

• Functional programming paradigm.
• Numpy (Python library) like syntax.
• Automatic parallelization & vectorization.

• Differentiability could also be used for design optimization.

https://github.com/hips/autograd
https://www.tensorflow.org/xla
https://github.com/hips/autograd
https://www.tensorflow.org/xla


8

Physically Based Rendering (1)

Credits: https://graphics.stanford.edu/courses/cs348b-competition/cs348b-09/

• Computer graphics approach that render images by 
modeling the behaviour of light rays in the real world.

CS348B: Zach DeVito implemented a system 
for automatic spider web generation and then 
simulated wavelength dependent refraction 
through the web's threads.



9

Physically Based Rendering (2)

• Sample light rays from the camera and trace them until 
they hit a light source.

• Model the interaction of light rays with materials.
• Need to find which object in the scene a light ray will 

intersect first.
• 𝒪 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑐𝑒𝑛𝑒.

- Not computational efficient.
• Can be improved with exact or approximated algorithms.

- We know exactly the setup.
• Intersections can be computed in 𝒪(1).

Credits: Physically Based Rendering: From Theory To Implementation. Matt Pharr, Wenzel Jakob, and Greg Humphreys.


