Resonator Modeling

DM Radio Collaboration Meeting J. Singh – Stanford University 13 August 2020

Motivation

- 50L (& M³) is a resonant search with a tunable circuit.
- Resonator Q impacts sensitivity must optimise.

Preliminary Constraints

- Requirement: Tunable from ~5 kHz to 5 MHz.
- Requirement: High Q (~10⁶).
- Capacitance has to be above parasitic capacitance ~10pF.
- Single layer of inductor turns.

Accessible Range

Inductive Tuning

Capacitive Tuning

Dip Probe Campaign

- Need materials data (tan δ at MHz frequencies).
- Requires a dedicated testing campaign \rightarrow dip probe.
- With materials data, can also use probe to test if loss model accurately predicts Q.

- Dip probe can access relevant parameter space.
- Can measure tan δ to 10-6 level (assuming dip probe resonator Q of 50,000).

A (**Premature**) Q Estimate

- Assuming R₀ negligible, tan $\delta = 10^{-6}$, tan $\delta_{I} = 10^{-4}$
- $C_p \sim 1 \text{ pF}$ (from literature), L = 1.7 mH, C = 1.5 nF
- f = 100 kHz, Q = 940,000

Assumptions inspired by Falferi et al. Review of Scientific Instruments 65, 2916 (1994)

Grandi et al. IEEE Transactions on Industry Applications 35, 1162 (1999)

Next Steps

- Assemble dip probe.
- Get material data/refine loss model.
- Future: Refine strawman, connect to sheath modeling, consider aspects such as tuning.