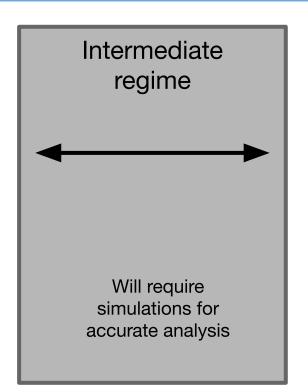
M3 Coaxial design and estimated figure of merit

Cady van Assendelft, Stanford University
DM Radio Collaboration Meeting
August 13, 2020

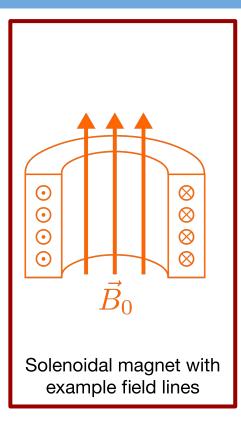

Frequency ranges

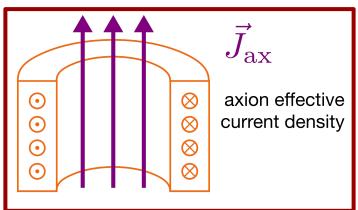
Low frequency: quasistatic treatment

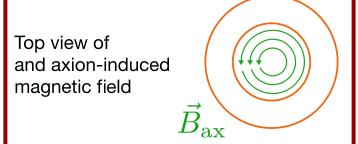
$$a, b, h \ll \lambda_{\rm ax}$$

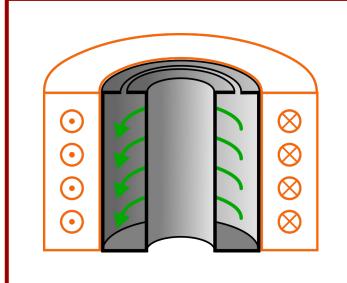
This analysis:

Treat pickup as a lumped-element inductor

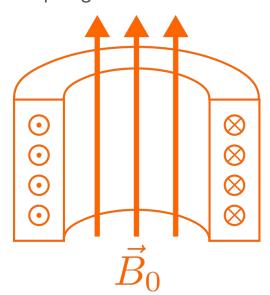


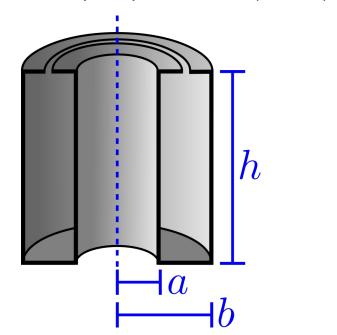

High frequency: cavity limit


$$a, b, h \sim \lambda_{\rm ax}$$


Mode analysis of pickup structure (Nicholas' slides)

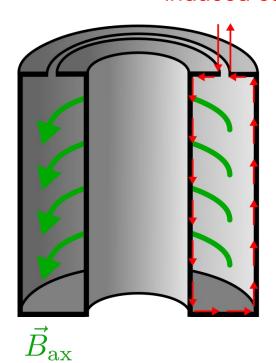
Solenoidal magnet and coaxial pickup




Coaxial pickup structure inside solenoidal magnet captures flux from axion-induced magnetic field

Simplifying assumptions

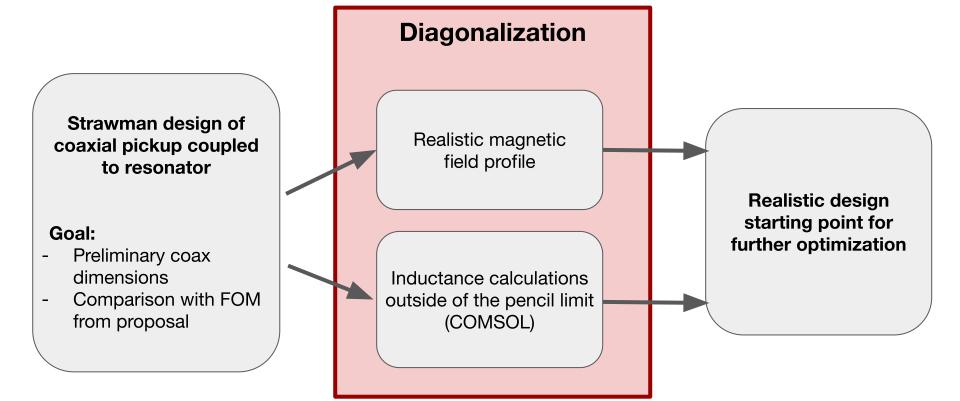
Homogeneous magnetic field in pickup region


2) Pencil limit for pickup inductance ($h \gg b$)

both of these assumptions break down as we move towards a more "squat" geometry

Coupled energy

induced current



Coupled energy is calculated from the flux through the pickup structure.

$$\Phi = \int B_{\rm ax} \cdot \mathrm{d}A$$

$$E_{\text{coupled}} = \frac{\Phi^2}{2L}$$

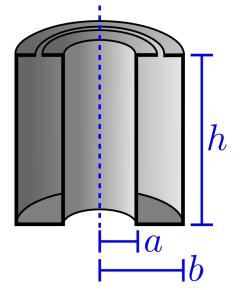
Design process overview

Figure of merit

$$\mathrm{FOM} \propto \frac{c_{\mathrm{PU}} B_0 V^{5/6} Q^{1/4}}{\eta^{1/4} T^{1/4}} \propto \frac{E_{\mathrm{coupled}}^{1/2} Q^{1/4}}{\eta^{1/4} T^{1/4}}$$
 valid in the quasi-static limit

- 1) How do we map the coaxial design onto this figure of merit?
- 2) Can we match the target science reach with a preliminary coax design?

Parameters from proposal:

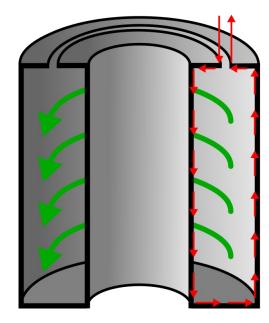

Geometric factor	$c_{ m PU}$	0.20
Magnetic field	B_0	$4\mathrm{T}$
Pickup volume	V	$1\mathrm{m}^3$
Quality factor	Q	10^{6}
Temperature	T	$20~\mathrm{mK}$
SQUID noise parameter	η	20
Performance margin	_	42%

Coax figure of merit (not coupled to resonator)

FOM
$$\propto \frac{c_{\text{PU}} B_0 V^{5/6} Q^{1/4}}{\eta^{1/4} T^{1/4}} \propto \frac{E_{\text{coupled}}^{1/2} Q^{1/4}}{\eta^{1/4} T^{1/4}}$$

$$V = \pi b^2 h$$

$$Q = \omega L / R_{\text{eff}}$$


determines Q {
 determines V {
 a: inner radius
 b: outer radius
 h: height
 }
 determines
 c_{PU}

Free parameters

 B_0 : magnetic field

Copper physics and $R_{\rm eff}$

induced current

 \vec{B}_{ax}

The pickup structure will be made of copper.

At **room temperature**, a 1 m³ coaxial pickup has $Q \sim 35{,}000$ at the $\lambda/4$ frequency

However, the **skin effect** is a function of frequency as well as **conductivity**, which is dependent on temperature.

At cryogenic temperatures, scale Q by replacing R with a frequency-dependent $R_{\rm eff}$

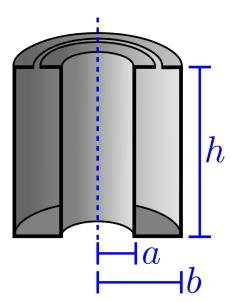
The same coaxial pickup at cryogenic temperatures has quality factor Q ~ 375,000 at the same frequency

Preliminary parameters

Constrained h/b \geq 2

Analysis done at 30 MHz

BAD ASSUMPTIONS:


- Homogeneous magnetic field
- Pencil limit inductance

	1 m^3	$1.5~\mathrm{m}^3$	2 m^3
\overline{a}	24 cm	$27~\mathrm{cm}$	$30 \mathrm{cm}$
b	$55~\mathrm{cm}$	$62~\mathrm{cm}$	$68~\mathrm{cm}$
h	1.1 m	$1.25~\mathrm{m}$	$1.38~\mathrm{m}$
B_0	4.0 T	$4.5~\mathrm{T}$	$4.5~\mathrm{T}$
$c_{ m PU}$	0.12	0.12	0.12
Q	2.8×10^{5}	3.2×10^5	3.5×10^5
Performance margin	-35%	2%	32%
			Largest performance margin

^{*} the figure of merit will be degraded by coupling to the resonator *

Key takeaways

- Can achieve ballpark figure of merit with a copper, coaxial pickup structure
- Optimization pushes towards higher volume, squatter geometry

Given this preliminary analysis, **plausible** to achieve DM Radio M3 science goals with a solenoidal magnet.

Once we couple to a resonator — are these science goals still plausible?