DM Radio M³ Overview

DM Radio Collaboration Meeting J. Singh — Stanford University 13 August 2020

 DM Radio M³ targets higher frequencies than 50L lumped element still optimal but beginning to break down.

Experimental Context

- Low frequency & high frequency cases:
 - 1. At low frequency we use the figure of merit to estimate sensitivity.
 - 2. At high frequency investigate mode structure to set cutoff.

Goal: Optimise Figure of Merit

Geometrical Pickup Factor Magnetic Field	Pickup Volume	Quality Factor
---	---------------	----------------

$$FOM \propto \frac{c_{PU}B_0 V^{5/6} Q^{1/4}}{\eta^{1/4} T^{1/4}}$$

Amplifier Noise Temperature

Goal: Optimise Figure of Merit

Stanford University

Key Question: Toroidal vs Solenoidal Magnet

Toroid Magnet (50L)

Agenda I: Problems with Toroid, High Frequency Analysis

- Challenges with toroidal magnet in M³ regime.
- Investigation of mode structure in coaxial pickup impact on high freq. science goals.

Agenda II: Solenoidal Magnet in Quasistatic Limit

- Behaviour of uncoupled coaxial pickup in quasistatic limit.
- Initial sensitivity estimate based on FOM.

Agenda III: Sensitivity Estimate with Resonator Coupling

- Repeat Cady's analysis with a coaxial pickup coupled to a resonator.
- Initial sensitivity estimate based on FOM.

