EM losses in sheath & magnet

DM Radio collaboration meeting 08/13/2020 Alex Droster, (soon-to-be) 3rd year grad student @UC Berkeley

- Pick up loop in the center will sample lossy material in the sheath
- How much? What designs can mitigate this?
- Simulations with Ansys HFSS

Simulation campaign

- Pickup resonator modeling (Joe Singh)
 - Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
 - COMSOL modeling to calculate sheath inductance, optimization of available energy
- Sheath RF modeling (me, Alex Droster)
 - HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
- Magnet (Alex Sebastian Leder)
 - OPERA simulations of DC magnetic field profiles, fringe fields
- Thermal (Maria Simanovskaia)
 - Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Simulation campaign

- Pickup resonator modeling (Joe Singh)
 - Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
 - COMSOL modeling to calculate sheath inductance, optimization of available energy
 - Sheath RF modeling (me, Alex Droster)
 - HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
 - Magnet (Alex Sebastian Leder)
 - OPERA simulations of DC magnetic field profiles, fringe fields
 - Thermal (Maria Simanovskaia)
 - Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Sheath RF simulations in HFSS inform: magnet dimensions in OPERA sims, Sheath dimensions in COMSOL sheath inductance sims, coupled energy in pickup resonator modeling...

Simulation campaign

- ⇒ Pickup resonator modeling (Joe Singh)
 - Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
 - COMSOL modeling to calculate sheath inductance, optimization of available energy
 - Sheath RF modeling (me, Alex Droster)
 - HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
 - Magnet (Alex Sebastian Leder)
 - OPERA simulations of DC magnetic field profiles, fringe fields
 - Thermal (Maria Simanovskaia)
 - Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Sheath RF simulations in HFSS inform: magnet dimensions in OPERA sims, Sheath dimensions in COMSOL sheath inductance sims, coupled energy in pickup resonator modeling...

Losses in any given design inform end-to-end sensitivity

What is loss in a material?

- Loss refers to energy dissipated into a material ("lossy medium") in the form of heat
- In the quasi-static limit, loss in a conductor is due to magnetic fields
 - Surface currents/"Eddy currents" create loss due to Ohmic heating: $P_{loss} = (1/2\sigma\delta) \int |n \times H_t|^2 dS$
- There are a handful of ways to calculate loss in HFSS-- I've spent a lot of time validating them!
- The magnet mandrel (metal "frame" around which the wires are wound) is not superconducting, therefore it is lossy.

|S₁₁|²+|S₂₁|²+loss = 1 **Simulation parameters** Mandrel (lossy) Sheath material: PEC Solver type: Driven Modal W Discrete solver (slowest but best accuracy) 0 Frequencies: 1 MHz - 200 MHz C Log steps; 100 steps each decade g_m ł 1 W input power on waveport 1 Parametric sweep of geometric variables g d is distance b/t mandrel d Log distributed and sheath gap frequency 301 Sweep Points 1.0000 MHz steps 1.0233 MHz .0471 MHs Mandrel Mandrel material: OBEE MUR 1220 MHz .1749 MHs 1 2022 MH (lossy) metal with σ ={1E5 to 1.2303 MHz 1E8}S/m Points (GHa 9 Close 0 40 80 (cm)

Loss as a function of frequency and l

Loss as a function of frequency and w

Loss as a function of frequency and $g_s (g_m = 1 \text{ cm})$

Loss as a function of frequency and $g_m (g_s = 1 \text{ cm})$

Loss (a)10 MHz as a function of g_s (x-axis) and g_m

Loss (a)10 MHz as a function of g_s and g_m (x-axis)

20

DM Radio 50 L Geometry

Toroidal model with lossy material

Side view

Fun animation

(outdated geometry)

60 (cm)

Loss as a function of frequency (1 mode (TEM))

Loss as a function of frequency (3 modes (TEM+2TE))

Conclusions & Future work

Conclusions

- The parameter that most affects loss is g_m, the gap in the mandrel
 - Loss does not depend on *l*, at least in simulation (may matter in real life (see "future work"))
 - \circ ~ Loss has weak dependence on w and ${\rm g_s}$
- $g_m = 1$ cm and $g_s = 0.5$ cm have been chosen for the DM Radio 50 L version 0 dimensions.

Future Work

- I will incorporate pickup loop into simulations, and use this as source of power instead of waveports
 - Requires lumped elements (L, C, etc...) in HFSS
 - Find voltage/capacitance across various parts of the design (useful for DM Radio m^3)
 - \circ $\hfill This will allow me to incorporate the other gap in the sheath/mandrel$
- More realistic mandrel
 - Insulators/dielectrics
- Parasitic resonance

Appendix

Field equations that determine loss

For a rectangular waveguide with dimensions a, b, fields of the TE_{10} mode are

$$H_{z} = H_{0} \cos(\frac{\pi x}{a})e^{i(kz-\omega t)}$$

$$H_{x} = -\frac{ika}{\pi}H_{0}\sin(\frac{\pi x}{a})e^{i(kz-\omega t)}$$

$$E_{y} = \frac{i\omega a\mu}{\pi}H_{0}\sin(\frac{\pi x}{a})e^{i(kz-\omega t)}$$
(Jackson)

HFSS puts 1 W of time-averaged power on the waveport. Therefore we solve for H_0 as follows:

$$1 \mathsf{W} = P = \frac{1}{2} \int_{S} \vec{E} \times \vec{H}^* \cdot d\vec{S} = \dots = \frac{1}{2} H_0^2 \frac{ka^2 \mu \omega}{\pi^2} \frac{a}{2} b$$
$$\Rightarrow H_0 = \sqrt{(1W) \frac{4\pi^2}{ka^3 b \mu \omega}}$$

Power loss in a good conductor is given as follows:

$$P_{\text{loss}} = \frac{1}{2\sigma\delta} \oint_C |\hat{n} \times H_t|^2 \qquad \text{(Jackson)}$$
$$\propto \frac{1}{\delta} H_0^2 \propto \frac{1}{k\sqrt{\omega}}$$

Rectangular waveguide - loss 1-100 MHz

Rectangular waveguide - loss 300-400 MHz

Calculating loss in HFSS

- For a good conductor, one may calculate loss according to the surface impedance $Z_s = (1-i)/\sigma\delta$ with the following formula:
 - $\circ \qquad \mathsf{P}_{\mathsf{loss}} \texttt{=} \texttt{f}(1/\mathsf{Z}_{\mathsf{s}})^* |\mathsf{n} \times \mathsf{H}_{\mathsf{t}}|^2$
- One may calculate loss in HFSS via a few methods:
 - \circ 1- $|S_{21}|^2$ - $|S_{11}|^2$
 - Only works for propagating modes (above cutoff frequency). I call this method "S-matrix"
 - Using HFSS internal fields calculator
 - "Surface_loss_density" (this is what the documentation suggests). I simply call this method "HFSS"
 - I can manually integrate the fields according to $P_{loss} = \int (1/Z_s)^* |n \times H_t|^2$. I call this "my surface loss"

Calculating loss in HFSS

- I examined the following three methods:
 - \circ 1- $|S_{21}|^2$ - $|S_{11}|^2$
 - Only works for propagating modes (above cutoff frequency)
 - "Surface_loss_density" (this is what the documentation suggests)
 - I can manually integrate the fields according to $P_{loss} = \int (1/Z_s)^* |n \times H_t|^2$
- I examined two geometries:
 - Coax TEM mode
 - No cutoff frequency, so I tried all 3 above methods
 - Rectangular waveguide
 - Cutoff ~340 MHz, so below cutoff I can only use fields calculator methods below cutoff

Coax - loss 1-30 MHz

Coax - loss (log log plots) 1-30 MHz

Coax - Ratio to theory

Coax - conclusion

- S-matrix method agrees to <5% (good)
- HFSS built-in "surface_loss_density" method agrees to <5% (good)
- My surface loss method agrees to <11% (OK)

Rectangular waveguide - loss 1-100 MHz

Rectangular waveguide - ratio with theory 1-100 MHz

Rectangular waveguide - loss 300-400 MHz

Rectangular waveguide - ratio with theory 300-400 MHz

Rectangular waveguide - conclusions

- Above cutoff, S-matrix method agrees to <0.1% (good)
- HFSS built-in "surface_loss_density" method agrees to
 - \circ <.2% at all frequency ranges (1-100 MHz & 300-400 MHz) (good)
- My surface loss method agrees to
 - <23% in 1-100 MHz range (**bad**)
 - <6% in 300-400 MHz range (OK)

d?

Loss @10 MHz as a function of g_s (x-axis) and d

Loss @10 MHz as a function of g_s and d (x-axis)

46

Conductivity?

Loss as a function of conductivity: theoretical dependence on σ : P $\propto 1/\sqrt{\sigma}$

- Loss comes from electric fields moving around electrons (in non-ferrite materials)
- For a wave incident upon a conductor, loss comes from the electric field and the electric field induced by a time-varying magnetic field (Faraday's law)
- In the quasi static limit, the loss from Faraday's law is dominant, so it suffices to consider induced electric fields/currents
- Jackson 5.18A and Jackson 8.1 provide a good way to find loss power loss in a conducting medium. Assuming a wave propagating in the z direction,

 $H_x(z,t) = H_0 e^{-z/\delta} \cos\left(z/\delta - \omega t\right) \qquad E_y(z,t) = \frac{1}{\sigma} \frac{\mathrm{d}H_x}{\mathrm{d}z} \qquad J_y = \sigma E_y \qquad P_{\mathrm{loss}} = \frac{1}{2} \int \vec{J} \cdot \vec{E} = \frac{1}{2} \int \mu \omega H_0^2 e^{-2z/\delta} dt = \frac{1}{2} \int \mu \omega H_0^2 dt = \frac{1}{2} \int \mu$

Skin depth:
$$\delta = \sqrt{rac{2}{\omega\mu\sigma}}$$
 $P_{\mathrm{loss}} = rac{1}{4} |H_0|^2 \sqrt{rac{\mu\omega}{2\sigma}}$

Power loss as a function of conductivity at 10 MHz

x-axis is conductivity of lossy material, not frequency!

Perturbed cavity?

Loss as a function of frequency and $g_s (g_m = g_s)$

Whispering gallery?

"Whispering gallery" modes

• First theoretically described by Lord Rayleigh in 1896 to explain sound waves in the whispering gallery of St. Paul's Cathedral

Whispering gallery modes

Lord Rayleigh, "The Theory of Sound, Vol.2", (1896); Phil. Mag. 20,1001 (1910); ibid. 27,100 (1914); Proc. Royal Institution of Great Britain, January, 1904.

Prediction: $f_{np} = \omega_{np}/2\pi = 448 \ MHz, 673 \ MHz, 742 \ MHz, ...$

Simulation in Ansys HFSS

• Mode at **341 MHz** (TEM mode) (not whispering gallery)

• 2X modes at 674 MHz (TE mode)

• 2X mode at **450 MHz** (TE modes)

