EM losses in sheath \& magnet

DM Radio collaboration meeting 08/13/2020
Alex Droster, (soon-to-be) 3rd year grad student @UC Berkeley

Background

- Pick up loop in the center will sample lossy material in the sheath
- How much? What designs can mitigate this?
- Simulations with Ansys HFSS

Superconducting Sheath Section 2

Simulation campaign

- Pickup resonator modeling (Joe Singh)
- Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
- COMSOL modeling to calculate sheath inductance, optimization of available energy
- Sheath RF modeling (me, Alex Droster)
- HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
- Magnet (Alex Sebastian Leder)
- OPERA simulations of DC magnetic field profiles, fringe fields
- Thermal (Maria Simanovskaia)
- Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Simulation campaign

- Pickup resonator modeling (Joe Singh)
- Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
- COMSOL modeling to calculate sheath inductance, optimization of available energy
- Sheath RF modeling (me, Alex Droster)
- HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
- Magnet (Alex Sebastian Leder)
- OPERA simulations of DC magnetic field profiles, fringe fields
- Thermal (Maria Simanovskaia)
- Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Sheath RF simulations in HFSS inform: magnet dimensions in OPERA sims, Sheath dimensions in COMSOL sheath inductance sims, coupled energy in pickup resonator modeling...

Simulation campaign

- Pickup resonator modeling (Joe Singh)
- Circuit model parameters, optimization of coupled energy
- Sheath Inductance (Chiara Salemi, Nicholas Rapidis)
- COMSOL modeling to calculate sheath inductance, optimization of available energy
- Sheath RF modeling (me, Alex Droster)
- HFSS simulations of TEM + TE + TM modes within sheath, lossy materials within sheath, parasitics
- Magnet (Alex Sebastian Leder)
- OPERA simulations of DC magnetic field profiles, fringe fields
- Thermal (Maria Simanovskaia)
- Ansys and COMSOL modeling of mandrel cooling, thermal design, cooldown time

Sheath RF simulations in HFSS inform: magnet dimensions in OPERA sims, Sheath dimensions in COMSOL sheath inductance sims, coupled energy in pickup resonator modeling...

What is loss in a material?

- Loss refers to energy dissipated into a material ("lossy medium") in the form of heat
- In the quasi-static limit, loss in a conductor is due to magnetic fields
- Surface currents/"Eddy currents" create loss due to Ohmic heating: $P_{\text {loss }}=(1 / 2 \sigma \delta) \int\left|n \times H_{t}\right|^{2} d S$
- There are a handful of ways to calculate loss in HFSS-- I've spent a lot of time validating them!
- The magnet mandrel (metal "frame" around which the wires are wound) is not superconducting, therefore it is lossy.

Unwrapped sheath

Top view
Imagine cutting here

Working with a straight sheath helps the intuition
mandrel
First waveguide TE cutoff: ~340

Waveport 1, 1 W time-averaged power

Simulation parameters

- Solver type: Driven Modal
- Discrete solver (slowest but best accuracy)
- Frequencies: $1 \mathrm{MHz}-200 \mathrm{MHz}$
- Log steps; 100 steps each decade
- 1 W input power on waveport 1
- Parametric sweep of geometric variables

Log distributed
frequency steps

Mandrel (lossy)

Simulation parameters

- Solver type: Driven Modal
- Discrete solver (slowest but best accuracy)
- Frequencies: $1 \mathrm{MHz}-200 \mathrm{MHz}$
- Log steps; 100 steps each decade
- 1 W input power on waveport 1
- Parametric sweep of geometric variables

Log distributed
frequency steps

$\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+$ loss $=1$
Mandrel (lossy)

Loss as a function of frequency and l

Loss as a function of frequency and w

Loss as a function of frequency and $\mathrm{g}_{\mathrm{s}}\left(\mathrm{g}_{\mathrm{m}}=1 \mathrm{~cm}\right)$

cuve into	$\mathrm{g}_{\mathrm{s}}=0.1 \mathrm{~cm}$
_- 1-mag(S(waveport2,waveport1))^2-mag(S(waveport1,waveport1)) ${ }^{\wedge} 2$ Setup1: Sweep $=0.1 \mathrm{~cm}$ ' lossy $z=49.5 \mathrm{~cm}^{\prime}$	
- 1-mag(S(waveport2,waveport1))^2-mag(S(waveport1,waveport1))^2 Setup1: Sweep $=0.2 \mathrm{~cm}^{\prime}$ lossy $z={ }^{\prime} 49.5 \mathrm{~cm}^{2}$	
-_ $1-$ mag $^{\prime}\left(S(\text { waveport2, waveport1) })^{\wedge} 2-m a g\left(S(\text { waveport1, waveport1) })^{\wedge} 2\right.\right.$ Setup $1:$ Sweep $g=0.3 \mathrm{~cm}^{\prime}$ lossy_z $=^{\prime} 49.5 \mathrm{~cm}^{\prime}$	
- 1-mag(S(waveport2,waveport1)) ${ }^{\wedge} 2-m a g\left(S(\text { waveport1,waveport1)) })^{2}\right.$ $\mathrm{g}==^{\prime} 0.4 \mathrm{~cm} \mathrm{~m}^{\prime}$ lossy_z $=^{\prime} 49.5 \mathrm{~cm}^{\prime}$	
- 1-mag(S(waveport2,waveport1)) ${ }^{\wedge} 2-m a g\left(S(\text { waveport1,waveport1) })^{\wedge} 2\right.$ Setup $=0.5 \mathrm{~cm}^{\prime}$ lossy $\mathrm{C}^{2}=49.5 \mathrm{~cm}^{\prime}$.	
- 1-mag(S(waveport2, waveport1) $\wedge^{\wedge} 2-\operatorname{mag}\left(S(\text { waveport } 1, \text { waveport1) })^{\wedge} 2\right.$ Setup1 : Sweep $\mathrm{g}=0.7 \mathrm{~cm}{ }^{\prime}$ lossy_z='49.5 cm'	
-_ 1 -mag $(S(\text { waveport2, waveport1 }))^{\wedge} 2-$ mag $(S(\text { waveport1, waveport1 }))^{\wedge} 2$ Setup $1:$ Sweep $g=0.9 \mathrm{~cm}^{\prime}$ lossy_z $=^{\prime} 49.5 \mathrm{~cm}^{\prime}$	
- 1-mag(S(waveport2,waveport1))^2-mag(S(waveport1,waveport1))^2 Setup 1: Sweep $\mathrm{g}={ }^{\prime} 1 \mathrm{~cm} \mathrm{~cm}^{\prime}$ lossy_z='49.5 cm^{\prime}	$\mathrm{g}_{\mathrm{s}}=1 \mathrm{~cm}$

Loss as a function of frequency and $g_{m}\left(g_{s}=1 \mathrm{~cm}\right)$

Loss @10 MHz as a function of $g_{s}(x-$ axis $)$ and g_{m}

cure into	
- 1-mag(S(waveport2, waveport1)) $)^{\wedge} 2-$ mag $\left(S(\text { waveport1, waveport1) })^{\wedge} 2\right.$ Setup $2:$ LastAdaptive Freq $=0.01 \mathrm{GH} z^{\prime}$ lossy_z $=^{\prime} 47.5 \mathrm{~cm}^{\prime}$	$\mathrm{g}_{\mathrm{m}}=5 \mathrm{~cm}$
- 1-mag(S(waveport2, waveport1) $)^{\wedge} 2$-mag(S(waveport1, waveport1)) ${ }^{\wedge} 2$ Setup2 : LastAdaptive Freq= $=0.01 \mathrm{GHz}$ ' lossy_z=' $48.5 \mathrm{~cm}^{\prime}$	$\mathrm{gm}_{\mathrm{m}}=3 \mathrm{~cm}$
- 1-mag(S(waveport2, waveport1)) ${ }^{\wedge} 2$-mag(S(waveport1, waveport1)) ${ }^{\wedge} 2$ Setup2 : LastAdaptive Freq $={ }^{\prime} 0.01 \mathrm{GHz} z^{\prime}$ lossy_z $=^{\prime} 49.5 \mathrm{~cm}^{\prime}$	$\mathrm{gm}_{\mathrm{m}}=1 \mathrm{~cm}$
- 1-mag(S(waveport2,waveport1)) 2 -mag(S(waveport1, waveport1)) ${ }^{2} 2$ Setup2 : LastAdaptive Feq $=0.01 \mathrm{GHz}$ ' lossy $z=49.6 \mathrm{~cm}^{\prime}$	$\mathrm{g}_{\mathrm{m}}=0.8 \mathrm{~cm}$
1-mag(S(waveport2, waveport1))^2-mag(S(waveport1, waveport1)) ${ }^{\wedge} 2$ Setup2 : LastAdaptiv Freq $={ }^{\prime} 0.01 \mathrm{GH} z^{\prime}$ lossy_z $=^{\prime} 49.7 \mathrm{~cm}^{\prime}$	$\mathrm{g}_{\mathrm{m}}=0.6 \mathrm{~cm}$
-_ 1-mag(S(waveport2, waveport1))^^2-mag(S(waveport1, waveport1)) $)^{\wedge} 2$ Setup 2 : LastAdaptive Setup2 $:$ LastAdaptive Freq $=0.01 \mathrm{GHz} z^{\prime}$ lossy_z=' $49.8 \mathrm{~cm}^{*}$	$\mathrm{g}_{\mathrm{m}}=0.4 \mathrm{~cm}$
- 1-mag(S(waveport2,waveport1))^2-mag(S(waveport1, waveport1))^2 Setup2 : LastAdaptive Freq $=0.01 \mathrm{GHz}$ ' lossy_z ${ }^{\prime} 49.9 \mathrm{~cm}^{\prime}$	$\mathrm{g}_{\mathrm{m}}=0.2 \mathrm{~cm}$
	$\mathrm{g}_{\mathrm{m}}=0$ (mandrel halves touching)

Loss @10 MHz as a function of g_{s} and g_{m} (x-axis)

DM Radio 50 L Geometry

DM Radio 50 L Geometry

Loss has weak dependence on

Loss has weak dependence on w, the smaller the better

Toroidal model with lossy material

Top view

Side view

Fun animation

Geometry

Loss as a function of frequency (1 mode (TEM))

Loss as a function of frequency (3 modes (TEM $+2 T E$))

Conclusions \& Future work

Conclusions

- The parameter that most affects loss is g_{m}, the gap in the mandrel
- Loss does not depend on ℓ, at least in simulation (may matter in real life (see "future work"))
- Loss has weak dependence on w and g_{5}
- $\quad g_{m}=1 \mathrm{~cm}$ and $g_{s}=0.5 \mathrm{~cm}$ have been chosen for the DM Radio 50 L version 0 dimensions.

Future Work

- I will incorporate pickup loop into simulations, and use this as source of power instead of waveports
- Requires lumped elements (L, C, etc...) in HFSS
- Find voltage/capacitance across various parts of the design (useful for DM Radio m^3)
- This will allow me to incorporate the other gap in the sheath/mandrel
- More realistic mandrel
- Insulators/dielectrics
- Parasitic resonance

Appendix

Field equations that determine loss

For a rectangular waveguide with dimensions a, b, fields of the TE_{10} mode are

$$
\begin{aligned}
& H_{z}=H_{0} \cos \left(\frac{\pi x}{a}\right) e^{i(k z-\omega t)} \\
& H_{x}=-\frac{i k a}{\pi} H_{0} \sin \left(\frac{\pi x}{a}\right) e^{i(k z-\omega t)} \quad \text { (Jackson) } \\
& E_{y}=\frac{i \omega a \mu}{\pi} H_{0} \sin \left(\frac{\pi x}{a}\right) e^{i(k z-\omega t)}
\end{aligned}
$$

HFSS puts 1 W of time-averaged power on the waveport. Therefore we solve for H_{0} as follows:

$$
\begin{aligned}
& 1 \mathrm{~W}=P=\frac{1}{2} \int_{S} \vec{E} \times \vec{H}^{*} \cdot d \vec{S}=\ldots=\frac{1}{2} H_{0}^{2} \frac{k k^{2} \mu \omega \frac{a}{\pi^{2}} \frac{a}{2} b}{} \\
& \Rightarrow H_{0}=\sqrt{(1 W) \frac{4 \pi^{2}}{k a^{3} b \mu \omega}}
\end{aligned}
$$

Power loss in a good conductor is given as follows:

$$
\begin{aligned}
& P_{\text {loss }}=\frac{1}{2 \sigma \delta} \oint_{C}\left|\hat{n} \times H_{t}\right|^{2} \\
& \quad \propto \frac{1}{\delta} H_{0}^{2} \propto \frac{1}{k \sqrt{\omega}}
\end{aligned}
$$

(Jackson)

Rectangular waveguide - loss 1-100 MHz

Rectangular waveguide - loss 300-400 MHz

Calculating loss in HFSS

- For a good conductor, one may calculate loss according to the surface impedance $Z_{s}=(1-\mathrm{i}) / \sigma \delta$ with the following formula:
- $\quad P_{\text {loss }}=\int\left(1 / Z_{s}\right)^{*}\left|n \times H_{t}\right|^{2}$
- One may calculate loss in HFSS via a few methods:
- $1-\left|S_{21}\right|^{2}-\left|S_{11}\right|^{2}$
- Only works for propagating modes (above cutoff frequency). I call this method "S-matrix"
- Using HFSS internal fields calculator
- "Surface_loss_density" (this is what the documentation suggests). I simply call this method "HFSS"
- I can manually integrate the fields according to $\mathrm{P}_{\text {loss }}=\int\left(1 / Z_{s}\right)^{*}\left|n \times H_{t}\right|^{2}$. I call this "my surface loss"

Calculating loss in HFSS

- I examined the following three methods:
- 1- $\left|S_{21}\right|^{2}-\left|S_{11}\right|^{2}$
- Only works for propagating modes (above cutoff frequency)
- "Surface_loss_density" (this is what the documentation suggests)
- I can manually integrate the fields according to $P_{\text {loss }}=\int\left(1 / Z_{s}\right)^{*}\left|n \times H_{t}\right|^{2}$
- I examined two geometries:
- Coax TEM mode
- No cutoff frequency, so I tried all 3 above methods
- Rectangular waveguide
- Cutoff $\sim 340 \mathrm{MHz}$, so below cutoff I can only use fields calculator methods below cutoff

Coax - loss 1-30 MHz

Loss (HFSS my surface loss)

Coax - loss (log log plots) 1-30 MHz

Loss (HFSS
surface loss)

Loss (HFSS my surface loss)

Coax - Ratio to theory

Coax - conclusion

- S-matrix method agrees to < 5% (good)
- HFSS built-in "surface_loss_density" method agrees to < 5% (good)
- My surface loss method agrees to $<11 \%$ (OK)

Rectangular waveguide - loss 1-100 MHz

Rectangular waveguide - ratio with theory 1-100 MHz

Ratio of theory to HFSS

Ratio of theory to HFSS my surface loss

Rectangular waveguide - loss 300-400 MHz

Rectangular waveguide - ratio with theory $300-400 \mathrm{MHz}$

Rectangular waveguide - conclusions

- Above cutoff, S-matrix method agrees to $<0.1 \%$ (good)
- HFSS built-in "surface_loss_density" method agrees to
- $<.2 \%$ at all frequency ranges ($1-100 \mathrm{MHz} \& 300-400 \mathrm{MHz}$) (good)
- My surface loss method agrees to
- $<23 \%$ in 1-100 MHz range (bad)
- $<6 \%$ in $300-400 \mathrm{MHz}$ range (OK)
d?

Loss @10 MHz as a function of g_{s} (x-axis) and d

Loss @10 MHz as a function of g_{s} and d (x-axis)

Conductivity?

Loss as a function of conductivity: theoretical dependence on $\sigma: \mathrm{P}_{1} / \sqrt{ } \sigma$

- Loss comes from electric fields moving around electrons (in non-ferrite materials)
- For a wave incident upon a conductor, loss comes from the electric field and the electric field induced by a time-varying magnetic field (Faraday's law)
- In the quasi static limit, the loss from Faraday's law is dominant, so it suffices to consider induced electric fields/currents
- Jackson 5.18A and Jackson 8.1 provide a good way to find loss power loss in a conducting medium. Assuming a wave propagating in the z direction,

$$
H_{x}(z, t)=H_{0} e^{-z / \delta} \cos (z / \delta-\omega t) \quad E_{y}(z, t)=\frac{1}{\sigma} \frac{\mathrm{~d} H_{x}}{\mathrm{~d} z} \quad J_{y}=\sigma E_{y} \quad P_{\text {loss }}=\frac{1}{2} \int \vec{J} \cdot \vec{E}=\frac{1}{2} \int \mu \omega H_{0}^{2} e^{-2 z / \delta}
$$

$$
\text { Skin depth: } \delta=\left.\sqrt{\frac{2}{\omega \mu \sigma}} \quad\left|P_{\text {loss }}=\frac{1}{4}\right| H_{0}\right|^{2} \sqrt{\frac{\mu \omega}{2 \sigma}}
$$

Power loss as a function of conductivity at 10 MHz

Method 1: conservation of energy.
Loss $=\left(1-\left|S_{21}\right|^{2}-\left|S_{11}\right|^{2}\right)^{*}(1 \mathrm{~W}$ input power)
Method 2: Ohm's law. Loss $=(1 / 2) \int_{\sigma}|E|^{2} d V$

x-axis is conductivity of lossy material, not frequency!

Perturbed cavity?

Loss as a function of frequency and $g_{s}\left(g_{m}=g_{s}\right)$

[^0]Whispering gallery?

Acoustic case:

"Whispering gallery" modes

- First theoretically described by Lord

Rayleigh in 1896 to explain sound waves in the whispering gallery of St. Paul's Cathedral

Whispering gallery modes
Lord Rayleigh, "The Theory of Sound, Vol.2", (1896); Phil. Mag. 20,1001 (1910); ibid. 27,100 (1914); Proc. Royal Institution of Great Britain, January, 1904.

E-field (TE mode):
B-field (TM mode):
\qquad

Prediction: $\quad f_{n p}=\omega_{n p} / 2 \pi=448 \mathrm{MHz}, 673 \mathrm{MHz}, 742 \mathrm{MHz}, \ldots$

- 2 X mode at 450 MHz (TE modes)

Simulation in Ansys HFSS

- Mode at 341 MHz (TEM mode) (not whispering gallery)

- 2 X modes at 674 MHz (TE mode)

These are the predicted whispering gallery modes!

[^0]: - 1 -mag(S(waveport2, waveport1) $)^{2} 2$-mag(S(waveport1, waveport1) $)^{n}$ Setup1: Sweep
 $\mathrm{g}=0.1 \mathrm{~cm}$ 'lossy
 $\mathrm{g}=0.1 \mathrm{~cm}{ }^{\prime}$ lossy $y_{-} z=50 \mathrm{~cm}$
 - 1 -mag(S(waveport2,waveport1) $)^{2} 2$-mag(S(waveport1, waveport1) $)^{2}$ Setup $1:$ Sweep
 $g=0.2 \mathrm{~cm}{ }^{\prime}$ lossy
 $\mathrm{g}=0.2 \mathrm{~cm} \mathrm{~m}^{\prime}$ lossy $z=50 \mathrm{~cm}^{\prime}$
 - 1 -mag(S(waveport2, waveport1) $)^{2} 2$-mag(S(waveport1, waveport1) $)^{22}$ Setup 1 : Sweep
 - 1-mag(S(waveport2, waveport1) ${ }^{2}$ 2-mag(S(waveport1, waveport1) ${ }^{2}$ Setup1:Sweep
 $g=0.4 \mathrm{~cm}^{\prime}$ lossy $z=50 \mathrm{~cm}^{\prime}$
 Setup1-mag(S(waveport2, waveport1) ${ }^{2} 2$-mag(S(waveport1, waveport1) n^{2} Setup $1:$ Sweep
 $\mathrm{g}=0.5 \mathrm{~cm}$ 'lossy
 - 1 -mag $\left(\mathrm{S}(\text { waveport2,waveport1) })^{\wedge} 2\right.$-mag $\left(S(\text { waveport1, waveport1) })^{2} 2\right.$ - ${ }_{\text {Setup 1 }}$ 1- Sweep
 $\mathrm{g}=0.6 \mathrm{~cm}^{\prime}$ lossy $z=50 \mathrm{~cm}^{\prime}$
 - ${ }^{1-m a g\left(S(\text { waveport2, waveport1) })^{2} 2-\mathrm{mag}\left(S(\text { waveport } 1, \text { waveport1) })^{2}\right.\right.} \mathbf{2}^{2}$ Setup1: Sweep
 $g=0.7 \mathrm{~cm}$ 'lossy
 - 1 -mag(S (waveport 2 , waveport1) $)^{2-m a g}\left(5(\text { waveport1, waveport1) })^{n^{2}}\right.$ Setup1: Sweep
 $\mathrm{g}=0.8 \mathrm{~cm} \mathrm{~m}^{\prime}$ lossy_z $z=50 \mathrm{~cm}$
 - 1 -mag(S(waveport2,waveport1) $)^{\mu-m a g}\left(S\left(\text { waveport1 } \text { waveport1 }^{2}\right)^{2} 2\right.$ Setup1: Sweep
 $\mathrm{g}=0.9 \mathrm{~cm} \mathrm{~m}^{\prime}$ lossy_z= $=50 \mathrm{~cm}^{\prime}$
 Setup 1 : Sweep
 $g=1 \mathrm{~cm}{ }^{\prime}$ lossy $z=-50 \mathrm{~cm}$.

