
HPSTR updates

03/11/2020

PF, Cam

2

Introduction

• Hpstr (Heavy Photon Search Toolkit for

Reconstruction) is a C++/python package for

analysis of reconstructed hps data and MC

• The package supports:

• Conversion from LCIO -> ROOT ntuples,

defining a ROOT based EDM with objects, i.e.

tracks/particles/vertices, and links between them

• ROOT tuples processing to produce histograms

and/or flat-Ntuples

• Post processing of histograms and/or flat-

Ntuples as well using ROOT python bindings

• The package repository:

• https://github.com/JeffersonLab/hpstr

• A README is provided with full instructions from

checkout to processing LCIO files

https://github.com/JeffersonLab/hpstr

3

Current Status

• HPSTR now has fully

implemented processors for

LCIO to a ROOT n-tuple that

has the structure for performing

both vtx and BH analysis

• Content:

• Unconstrained and

TargetConstrained V0s

• Particles containing

associated tracks and

clusters

• All tracks in the event

containing the hits on track

• All clusters in the Calo

containing the Calo hits

• Event Information

including trigger bits

4

Ntuple Processing and Vtx Cutflow

• Hpstr is currently implementing event selections in json files

to keep an ordered and clear structure for bookeeping cuts

• Cut values, order and presence can be changed without

recompilation

• Easy to add orthogonal control/validation/signal

regions

• Cutflows are generated automatically

• Vertex preselection cutflow matches between flat-tuple

based analysis and hpstr based analysis => analysis flow

validated

analysis/selections/vtxSelection.json

— hpstr
-|- vtx tuples

5

Streamlined Cutflow Development

• Hpstr provides easy to use support for

including different processes:

• Data / MC

• A’ or SIMPs signal

• Includes scripts for:

• Shape comparisons and bkg composition

• Cutflow tables

• Examples here for SIMPs search

• Plots are defined in json files so changes

can be made at run time

Tracking / hit studies

• Hpstr provides support for performance

studies:

• Tracking analysis, i.e. Kalman-GBL

comparison, track efficiency, truth

matching…

• Baseline extraction for SVT hits

including gaussian+landau fit for

charge deposition and baseline

extraction

• Calo/Hodo hits/cluster studies in

principle would be simple to add

• Analysis flow, radiative fraction and

statistical interpretation for BH analysis

are included in the framework

6

7

Current HPSTR Status

• Hpstr framework is in good shape to support 2019 analysis

• Vertexing analysis flow validated up to preselection

• Analysis flow in course of validation but:

• Radiative Fraction can be extracted (and agrees with Rafo’s)

• Statistical interpretations ported from old repos to hpstr

• New users (Stany) whom joined HPS recently were able to produce first

results quickly on SIMPs searches

• README with working examples and default processing documented

• Hpstr also useful to do performance studies relative

• Tracking, hit/cluster studies in SVT/Calo/Hodo …

• Plotting support with an “hps” style available

• Dev on C++ portion becoming less of a priority

7

HPSTR in the Future

• Focus shifting towards development of python analysis tools

● This portion runs on the output of C++ steps

● Currently organization of python code is poor

● Need to put effort into having a properly organized python project

• The python framework is more than JUST plotting

● Divide histograms for acceptance and eff studies

● Make new histograms from unbinnded data in selection output

● Integrate vtx efficiency and calculate expected A’ rate

● Most of the analysis level stuff can happen in this layer

• Further development of C++ portion can probably be handled by the

handful of people who wrote most of it to begin with

	Slide 1
	Introduction
	Current Status
	Example - Ntuple Processing and Vtx Cutflow
	Example - Plotting: bkg and shape comparison
	Example - Tracking / hit studies
	Summary
	Slide 8

