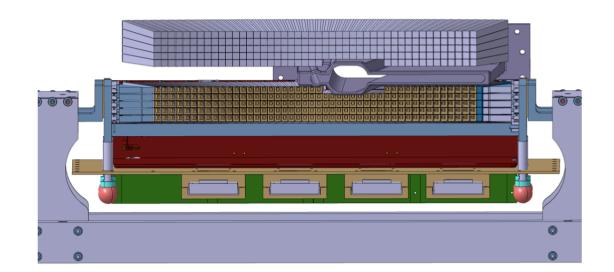
# **ECAL Reconstruction - 2019 Run**

**HPS Collaboration Meeting** 

May 2020

N. Baltzell








#### **Overview - Reconstruction**

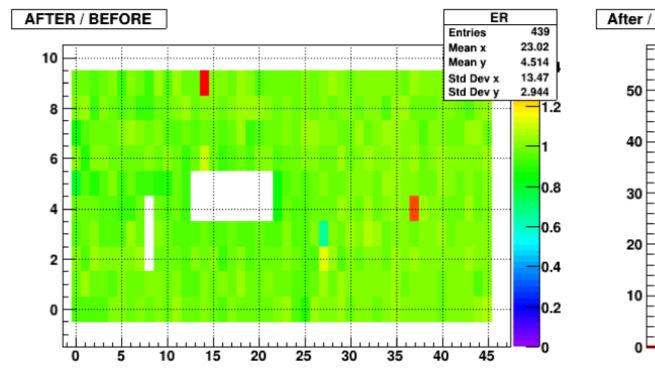
- Global Alignment
- Hits
  - 250 MHz FADC waveform --> ns & GeV
    - "3-pole" pulse fitting:
      - first samples -> initialize pedestal
      - threshold crossing --> initialize time
      - fixed width, free pedestal, time, amplitude
      - fit range limited to ~2/3 pulse to avoid pileup
    - Per-crystal gains to convert to GeV
    - Per-crystal timing offsets
- Clusters
  - Find local maxima seeds, grow to above-threshold neighbors
  - Time assigned as its seed's time
  - Cluster position based on energy-weighting its hits
- Corrections
  - Time Walk (energy-dependent)
  - "Sampling" Fraction (charge- and energy- dependent)
  - Edge Losses (energy- and y- dependent)
  - Position Parallax (charge-, energy-, and x- dependent)

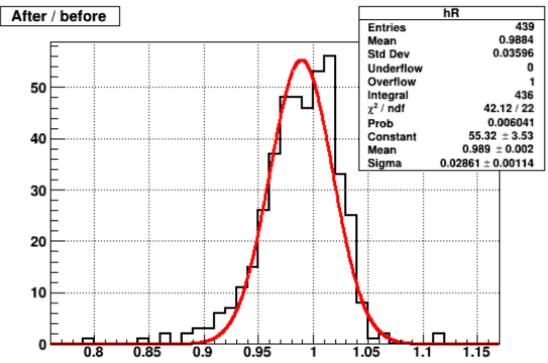


Things to redo/revisit for 4.5 GeV beam energy



## **Alignment**

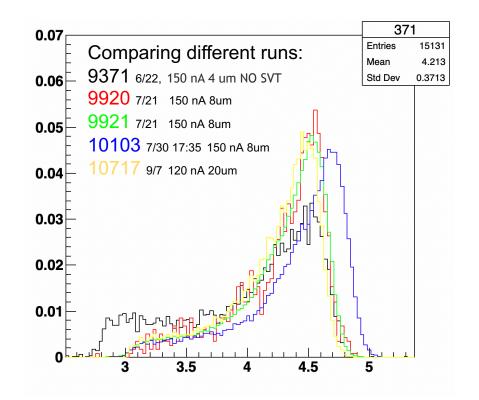

- Surveys
  - ~mm shifts in x/y relative to the previous run
  - Implemented in 2019 v2 detector
    - global y and z shifts only
    - accounting for what must be some human error in the surveys
- Previously we've done final alignment based on the SVT

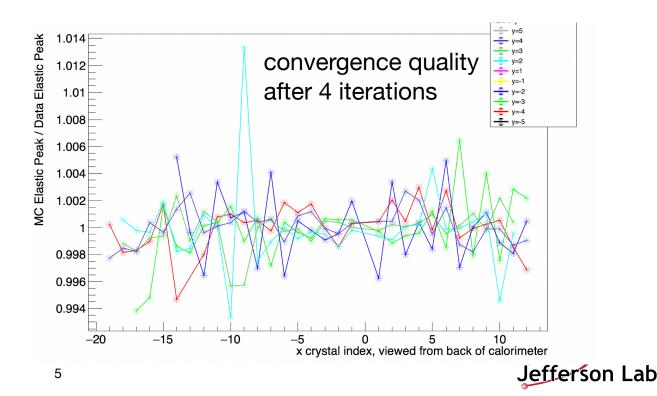

|         | 2019pre-2015 |         | 2019 post-pre       |              |          |
|---------|--------------|---------|---------------------|--------------|----------|
| dx (mm) | dy (mm)      | dz (mm) | dx (mm)             | dy (mm)      | dz (mm)  |
| 0.70    | -0.10        | -54.58  | -0.96000            | 0.28000      | 0.35000  |
| 1.13    | -0.33        | -54.72  | -1.16000            | 0.16000      | 0.48000  |
| 0.54    | 0.31         | -56.81  | 0.16000             | 0.41000      | -0.55000 |
| 0.96    | 0.41         | -57.23  | -0.13000            | -0.61000     | -0.65000 |
| -1.38   | 1.22         | -53.83  | -0.05000            | -0.02000     | -0.36000 |
| -0.91   | 1.59         | -53.78  | -0.17000            | -0.08000     | -0.39000 |
| -1.55   | 0.80         | -55.41  | -1.15000            | -0.12000     | 2.09000  |
| -1.02   | 0.62         | -56.30  | -1.84000            | -0.06000     | -0.20000 |
| -0.19   |              | -55.33  | The 2 mm dz must be | human error. |          |



### **Gain Calibration - Cosmics**

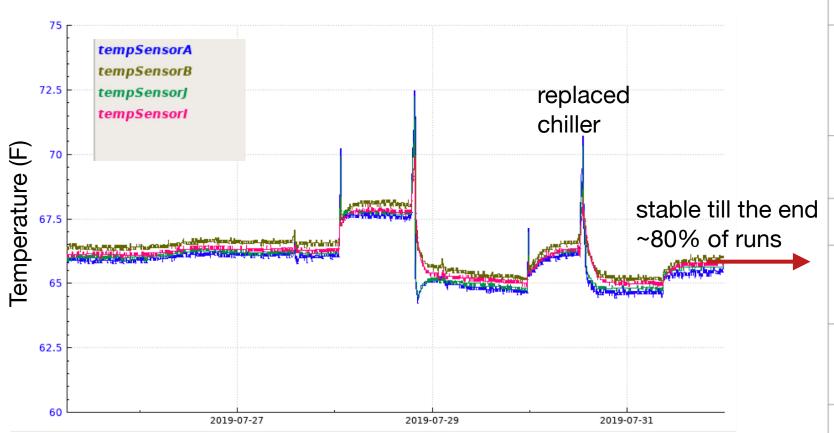
- Acquired weeks of cosmics before the run, and enough after the run for a comparison
- · Generally similar, larger variation after the run, some evidence of gain drop
- With only cosmic gains, ~4% resolution on 4.5 GeV e<sup>-</sup> and e<sup>-</sup>γ, and within 10% of nominal beam energy






### **Gain Calibration - FEEs**

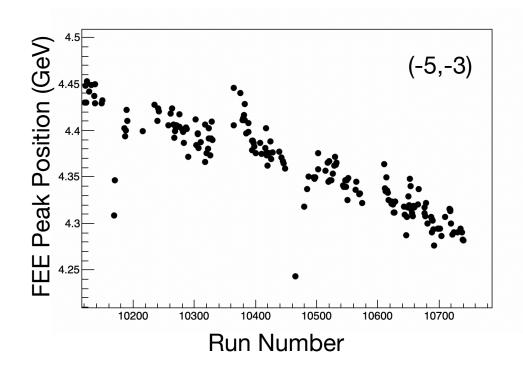

- Calculate gain scale factors to put FEE peak at the MC value for each crystal
- Based on fitting data and MC with Crystal Ball function shape
- Same procedure and software used for 2015/2016 gain calibrations
- Iterative procedure, assigning gain to seed
- Started with dedicated FEE trigger runs
- Noticed a run-dependence, correlates well with temperature in terms of sign and magnitude ...

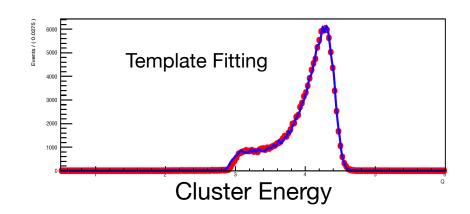


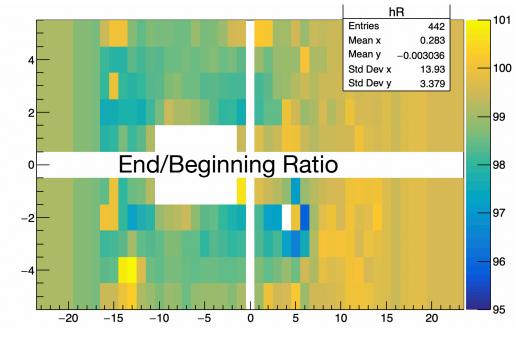


### **Gain Calibration - Cooling Issue**

- After power outage during commissioning, chiller started to significant issues with cooling ability
- Eventually replaced it, before *most* production running, and after that no temperature stability issues
- Divided data after the power outage into 6 temperature periods, calibrated independently with FEEs



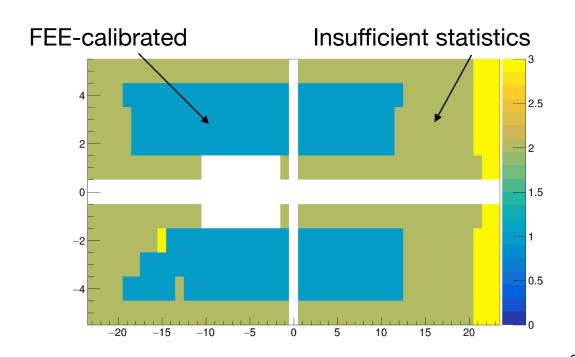


| # | From          | То            | Run range                    | Events                                                                                 |
|---|---------------|---------------|------------------------------|----------------------------------------------------------------------------------------|
| 1 | 25/7<br>06:00 | 28/7<br>01:05 | 10004-10064                  | At the end, chiller<br>stopped:<br>https://logbooks.jlab.org/<br>entry/3711089         |
| 2 | 28/7<br>02:00 | 28/7<br>19:30 | 10065-10069<br>(10070 junk?) | At the end:<br>https://logbooks.jlab.org/<br>entry/3711453                             |
| 3 | 29/7<br>00:01 | 29/7<br>22:30 | 10072-10084<br>(10085 junk?) | https://logbooks.jlab.org/<br>entry/3711954                                            |
| 4 | 30/7<br>00:01 | 30/7<br>11:30 | 10087-10093                  | At the end: new chiller replacement (https://logbooks.jlab.org/entry/3712197)          |
| 5 | 30/7<br>16:30 | 31/7<br>08:45 | 10101-10115                  | At the end: chiller temp changed from 15 to 15.5 according to MYA. Nothing on logbook. |
| 6 | 31/7<br>08:44 | end           | 10115-end                    | Golden Period                                                                          |

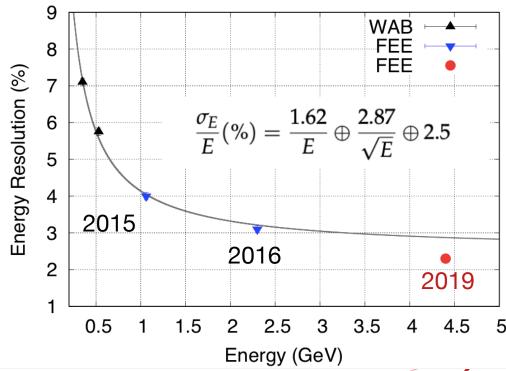



### **Gain Calibration - Time Evolution**

- Linear drop in gains with time/run# through the golden period, presumably beam-induced
- Effect correlated with rate, e.g. largest near the beam pipe and negligible at large-x
- Extracted run-dependent corrections, single channel when possible, otherwise local groups of channels
- Using template fitting and skims of all FEE triggers throughout production runs
- Up to a ~2% effect from beginning to end of golden period

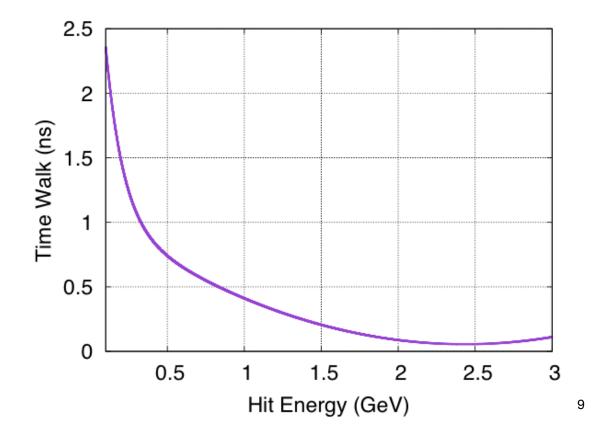


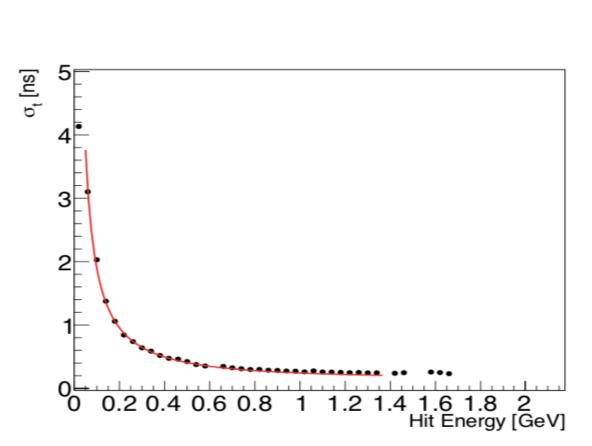





### **Gain Calibration - FEEs**


- After FEE calibration, preliminary resolution at 4.5 GeV is ~2%, which is roughly as projected by our published resolution curve
- Coverage is less than at our previous 1 or 2 GeV beam energies
  - at large scattering angles, not surprisingly
  - 1st row becomes difficult to fit, but not the case in pure 4 GeV FEE simulations
  - currently cosmics gains are used where FEEs do not reach, as in previous runs, with appropriate scaling factors
- Additional methods would be needed to extend high-energy calibration coverage
  - new FEE technique assigning non-seeds, tracks, WABs ...






## **Timing**

- RF pulses extracted
  - hardware mapping changes resolved, software in master branch
- 2016 time walk correction revisited
  - it's fine except above 2.3 GeV, above which we can just truncate the correction
- Single channel offsets in progress, must pick up the pace and finish this month ...
  - generally resolutions looking very similar to previous runs





### **Summary - Calibration Status**

- Weekly calibration meetings, Tuesdays @ 11:00:
  - https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=263756689
- Alignment (Nathan)
  - survey implemented in v2 detectors
  - to be supplemented/revisited with final tracking alignment
- Energy (Andrea & Luca)
  - single-channel gains
    - FEEs done, complemented by cosmics
    - in conditions database in ~35 run ranges
    - may later be extended to WABs or tracks for more non-cosmic coverage if necessary
  - simulations performed for "sampling" fractions and edge loss corrections, extraction soon
- Timing (Nathan)
  - 2019 RF hardware changes implemented in software
  - time-walk checked against 2016 parameterization
  - preliminary offsets extracted, finalize this month
- Position corrections
  - next ...

