SIMPs HPS analysis

Stanislava Sevova HPS Collaboration Meeting 05.13.2020

WIMP vs SIMP miracle

Relic abundance set by $2 \rightarrow 2$ annihilations

- DM mass ~ O(weak scale)
- alpha ~ O(weak coupling)

Relic abundance set thermally by freeze-out of a $3 \rightarrow 2$ process depleting number of DM particles in dark sector

At t=t_{freeze-out} DM $\leftarrow \rightarrow$ SM kinetic equilibrium, meaning dark sector must couple to SM to maintain this: interactions are mediated by A'!

- DM mass ~ O(MeV-GeV)
- strong self-coupling

Brief refresher of SIMP theory

Strongly Interacting Massive Particles: arise from QCD-like dark sector based on SU(3) group containing 3 flavors of "dark" quarks w/ charges=+1,-1,-1

- $\pi_{\rm D}$ = dark pion comprises the DM
- A' = couples dark sector to SM via kinetic mixing
- V_{D} = heavy dark vector meson (analogous to SM ρ meson)
- ε = kinetic mixing parameter
- $\alpha_{\rm D} = U(1)_{\rm D}$ gauge coupling constant
- $f\pi_{D}$ = dark sector pion decay constant

Most of the SIMP theory material is directly lifted from:

- Matt Solt's talk
- SIMP rates at HPS whitepaper
- <u>SIMP cosmology paper</u>

Constraints on the SIMP theory

- $m\pi_{D}$, mV_{D} , and $f\pi_{D}$ govern the relic abundance, so $m\pi_{D}/f\pi_{D} < 4\pi$ [~3-4 for wide range of masses]
- A' \rightarrow SM in early Universe is suppressed by small kinetic mixing, so $\epsilon < 10^{-2}$
 - SIMP cosmology sets small lower bound: $\varepsilon > 10^{-6.3}$
- $\alpha_{\rm D}$ constrained by perturbativity to be <1, so take QED-like $\alpha_{\rm D} \sim 0.01$
- Mass hierarchy:
 - SIMP cosmology requires suppression of standard annihilations & semi-annihilations,
 π_Dπ_D → A' → SM SM OR π_Dπ_D → A'π_D so: mA' > 2mπ_D
 - Visible HPS signals require: $mV_{D} < 2m\pi_{D}$ and $mA' > mV_{D} + m\pi_{D}$

Choice of parameters

- 2-body decays of V_{D} are detectable at HPS
 - V⁰ decays such as $\rho \rightarrow e+e$ or $\phi \rightarrow e+e$ -
- HPS projected sensitivity is largely unaffected by $mV_D:m\pi_D$ but relic abundance is extremely sensitive to splitting

SIMPs MC for HPS

- Full MC production chain in place used to generate 2016 SIMP MC:
 - MG5 configurations integrated into hps-mc
 - LHEs validated against existing ones produced by Takashi some time ago (see backup)
 - V_D displacement handled by a separate tool: <u>simp-lhe-to-stdhep</u>
 - Signals in following slides are generated with ctau = 10 mm
 - Samples include beam overlay, rotation to beam coordinates, PU & trigger simulation, and full
 2016 detector reconstruction
- Process LCIO outputs from hps-mc with hpstr to generate ROOT reco tuples
 - Includes MCParticle linking if desired

What does the signal look like?

We want to reconstruct an e+e- vertex displaced in Z peaking at mass values below the A' mass

SIMPs signal efficiency

Applying the 2016 vertexing analysis pre-selection yields ~73% SIMP signal efficiency N.B. Normalization is not applied to these yields!

	$m_{A'} = 130 \text{ MeV}$		$m_{A'} = 100 \text{ MeV}$		WAB		Tritrig	
	$m_{ ho_D} = 78 \mathrm{MeV}$		$m_{ ho_D} = 60 \mathrm{MeV}$					
	$m_{\pi_D} = 43.3 \text{ MeV}$		$m_{\pi_D} = 33.3 \text{ MeV}$					
		ϵ_{tot}		ϵ_{tot}		ϵ_{tot}		ϵ_{tot}
Trigger Pair1	6377	_	15433	_	31840	_	7.95433e06	_
$e^-\Delta_d(trk,clu) < 10\sigma$	6326	0.992	15281	0.99	31621	0.993	7.86906e06	0.989
$e^+\Delta_d(trk,clu) < 10\sigma$	6317	0.991	15252	0.988	31392	0.986	7.85067e06	0.987
$\Delta_t(clu_{e^-}, clu_{e^+}) < 1.45 \text{ns}$	6198	0.972	14956	0.969	30922	0.971	7.73721e06	0.973
$e^{-\Delta_t(trk,clu)} < 4$ ns	6174	0.968	14882	0.964	30802	0.967	7.68891e06	0.967
$e^+\Delta_t(trk, clu) < 4ns$	6153	0.965	14816	0.96	30361	0.954	7.6686e06	0.964
$\mathbf{p}_{e^-} < 1.75~\mathrm{GeV}$	6144	0.963	14806	0.959	30305	0.952	7.66146e06	0.963
$e^- \operatorname{track} \chi^2/\mathrm{ndf} < 6$	5969	0.936	14320	0.928	29662	0.932	7.48835e06	0.941
e^+ track $\chi^2/\mathrm{ndf} < 6$	5812	0.911	13802	0.894	27073	0.85	7.33095e06	0.922
$p_{e^-} > 0.4 \; [\text{GeV}]$	5502	0.863	13305	0.862	27002	0.848	7.24516e06	0.911
$p_{e^+} > 0.4 [\text{GeV}]$	5319	0.834	13016	0.843	26704	0.839	7.20846e06	0.906
$\chi^2_{unc} < 10$	4682	0.734	11166	0.724	13132	0.412	6.76432e06	0.85
$p_{vtx} < 2.4 \; [GeV]$	4682	0.734	11164	0.723	13087	0.411	6.76015e06	0.85

Signal kinematics of interest [I]

- Expect softer e+/e- momenta wrt tritrig/wab/nominal displaced A' signal, since π_D carries significant fraction of total momentum (as missing)
- In general, the heavier the mV_D the harder the resulting e+/e- decay product momenta

9

Signal kinematics of interest [II]

- Requiring single unconstrained V0 in the event significantly suppresses WAB bkg, but in turn reduces signal efficiency dramatically
- Pmiss (= Pbeam Psum) expectedly strongly discriminating against WAB bkg, less so against tritrig
- See gallery of distributions here

10

SIMP signal vertex kinematics [vtx analysis preselection]

Vertex Z vs Y position:

V_D production is typically very forward, so we would expect the spread in the reconstructed vertex Y position to be relatively small for SIMP signals

 Would help to eliminate significant part of the high Z tail in tritrig events

```
WAB events less affected
```

Towards "SIMP tight" cuts

	$m_{A'} = 130 { m ~MeV}$		$m_{A'} = 100 { m ~MeV}$		WAB		Tritrig	
	$m_{ ho_D} = 78 { m ~MeV}$		$m_{ ho_D} = 60 { m ~MeV}$					
	$m_{\pi_D} = 43.3 \text{ MeV}$		$m_{\pi_D} = 33.3 \text{ MeV}$					
		ϵ_{tot}		ϵ_{tot}		ϵ_{tot}		ϵ_{tot}
Vtx analysis preselection	4682	_	11164	_	13087	_	6.76015 e + 06	_
pass L1L1	3062	0.654	7176	0.643	5200	0.397	6.49437e + 06	0.961
$\mathbf{E}_{e^-} + \mathbf{E}_{e^+} < 0.83 \mathrm{Ebeam}$	2876	0.614	7011	0.628	2886	0.221	$5.10391e{+}06$	0.755
$p_e^- < 1.5 { m ~GeV}$	2876	0.614	7009	0.628	2859	0.218	5.08178e + 06	0.752
$p_e^+ < 1.5 \text{ GeV}$	2876	0.614	7009	0.628	2811	0.215	5.05666e + 06	0.748
$p_{vtx} < 2.0 { m GeV}$	2876	0.614	7004	0.627	2423	0.185	$4.8498e{+}06$	0.717
$N^{e^-}_{ m Shared}$ L0=0	2762	0.59	6748	0.604	2347	0.179	4.67108e + 06	0.691
$N_{ m Shared}^{e^+}$ L0=0	2686	0.574	6513	0.583	1128	0.086	$4.50254e{+}06$	0.666
$N_{vtx}=1$	2624	0.56	6355	0.569	1112	0.085	$4.39421e{+}06$	0.65
vtx Y> -0.4 mm	2508	0.536	6135	0.55	1098	0.084	$4.36561e{+}06$	0.646
vtx Y< 0.4 mm	2265	0.484	5758	0.516	1089	0.083	$4.35818e{+}06$	0.645

- L1L1 requirement removes ~35% of preselected SIMP signal events → likely possible to recover with L1L2 or L2L2 a la vertex analysis
- Esum & e+/e- momenta requirements help suppress tritrig
- No shared hits at L0 for e+ GBL track has 50% relative effect on WABs
- Lower/upper bounds on vtx Y position may be redundant for suppressing tritrig

Vertex invariant mass vs Z position [vtx analysis preselection]

Conclusions and outlook

- First look at the SIMPs 2-body signal at HPS
 - Integration of SIMP signal configurations into hps-mc
 - Full chain for 2016 MC reconstruction used to produce samples
 - In principle, this can be repeated for 2019 HPS detector settings, but will require re-running LHE generation step with updated Ebeam
- Preliminary investigation of vertex analysis preselection & some dedicated "SIMP tight" cuts
 - Worth exploring vertex impact parameter & isolation requirements from vertex search
 - Vertex analysis preselection plots
 - <u>SIMP tight selection plots (WIP)</u>

SIMP MC production

Link to updated google sheet

			HPS_HOME=/gpfs/slac/atlas/fs1/d/ssevova/hps			
mA' mRh	oD r	nPiD	lhe	displaced stdhep	slcio	root
50	30	16.7	\$HPS_HOME/hps-mc/production_v2/50_30_16p7	\$HPS_HOME/hps-mc/displaced_stdhep/ctau10mm/50_30_16p7	\$HPS_HOME/hps-mc/recon/ctau10mm/50_30_16p7	\$HPS_HOME/hpstr/mc/simp/ctau10mm/50_30_16p7/simp_50_30_16p7_rec
100	40	30	\$HPS_HOME/hps-mc/production_v2/100_40_30	\$HPS_HOME/hps-mc/displaced_stdhep/ctau10mm/100_40_30	\$HPS_HOME/hps-mc/recon/ctau10mm/100_40_30	\$HPS_HOME/hpstr/mc/simp/ctau10mm/100_40_30/simp_100_40_30_recon
100	10	10	\$HPS_HOME/hps-mc/production_v2/100_10_10	\$HPS_HOME/hps-mc/displaced_stdhep/ctau10mm/100_10_10	\$HPS_HOME/hps-mc/recon/ctau10mm/100_10_10	\$HPS_HOME/hpstr/mc/simp/ctau10mm/100_10_10/simp_100_10_10_recon
130	78	43.3	\$HPS_HOME/hps-mc/production_v2/130_78_43p3	\$HPS_HOME/hps-mc/displaced_stdhep/ctau10mm/130_78_43p3	\$HPS_HOME/hps-mc/recon/ctau10mm/130_78_43p3	\$HPS_HOME/hpstr/mc/simp/ctau10mm/130_78_43p3/simp_130_78_43p3_r
100	60	33.3	\$HPS_HOME/hps-mc/production_v2/100_60_33p3	\$HPS_HOME/hps-mc/displaced_stdhep/ctau10mm/100_60_33p3	\$HPS_HOME/hps-mc/recon/ctau10mm/100_60_33p3	\$HPS_HOME/hpstr/mc/simp/ctau10mm/100_60_33p3/simp_100_60_33p3_r
			hns-mc			
			npo-me	simp lhe to stdhep	hps-mc (hps-iava)	hpstr

and <u>Ihe to root parser</u>

17

MC step 1: LHE

- Generated LHE files for a few mass points w/ SIMP model UFO from Nikita, Stefania, Natalia, et al
- Validated against existing LHE files from Takashi:
 - Compare basic kinematic quantities at particle-level using parser developed to translate LHE event to ROOT: <u>hps-lhe-parsers</u> (does tritrig, rad, WABs, A's too)
 - Kinematics from new and original LHEs agree well within stats uncertainties

MC step 2: STDHEP

- LHE files do not take into account the displacement of rhoD
- Displacement tool in hps-mc only displaces e+e- if mother PDG ID=622 (A')
 - simp lhe to stdhep: wrapper for Takashi's tool that takes in LHE, swaps 625 & 622 (including mother-daughter linking), displaces e+e-, and spits out STDHEP file
 - *N.B:* for the plots that follow ctau=10 mm

MC step 3: SLCIO

- Run displaced STDHEP files through the rest of the MC chain including normal readout and reconstruction for the 2016 HPS detector:
 - Rotate to beam coordinates
 - Generate events in SLIC
 - Insert empty bunches expected by PU simulation
 - Run simulated events in readout to generate Pairs1 trigger
 - Run 2016 MC reconstruction

```
"target_z": -4.3,
    "detector": "HPS-PhysicsRun2016-Pass2",
        "run": 7984,
"readout_steering": "/org/hps/steering/readout/PhysicsRun2016TrigPairs1_LargeMC.lcsim",
        "recon_steering": "/org/hps/steering/recon/PhysicsRun2016FullReconMC.lcsim",
```

MC step 4: ROOT

- A. Use hpstr to process SLCIO files & produce ROOT ntuples
 - Reco config: <u>https://github.com/JeffersonLab/hpstr/blob/master/processors/config/recoTuple_cfg.py</u>
- B. Use VertexAnaProcessor (with some modifications) to process ntuples with cutflows to produce histos
 - <u>https://github.com/ssevova/hpstr/blob/master/processors/src/VertexAnaProcessor.cxx</u>
 - Vtx ana config: <u>https://github.com/ssevova/hpstr/blob/master/processors/config/anaVtxTuple_cfg.py</u>
 - SIMP region defs:

https://github.com/ssevova/hpstr/blob/master/analysis/selections/vertexSelection.json https://github.com/ssevova/hpstr/blob/master/analysis/selections/simpTight.json https://github.com/ssevova/hpstr/blob/master/analysis/selections/simpTightL1L1.json https://github.com/ssevova/hpstr/blob/master/analysis/selections/simpTightL1L1NoSharedL0.json

Vertex invariant mass [I]

- Observe a considerable shoulder/tail in vertex mass for signal points with low mass rho_D [e.g. A'=50, rhoD=30, piD=16.7 MeV]
- Effect is less pronounced for higher rho_D mass [™]

Vertex invariant mass [II]

- Check if track linked to e- with highest # hits on track is associated to truth radiated or recoil electron
- Demonstrates that large tail comes from vertices reconstructed using *recoil* electron track

Vertices

Vertex Z position

Ratio

e- tracks matched to truth recoil e- seem to contribute at low vtx z position

24

Vtx analysis pre-selection

Esum

 Truth-matched Esum distribution suggests that Esum < 1.9 GeV could be useful in suppressing contribution from recoil e-: Esum/Ebeam < 0.83 (opposite from vertex analysis!)

25

Comparison with tritrig: vtx inv mass & momentum

rhoD (displaced resonance) is generally softer than nominal displaced A', since some energy goes into producing piD which is undetected (missing energy)

- Contrary to vertex analysis, V0 will not carry most of the beam energy
- V0 p < 2 GeV will make SIMPs orthogonal to vertex analysis (What/if any is radiative cut for vtx?)

Comparison with tritrig: vtx Z position & σ_7

Comparison with tritrig: e+ & e- momenta

SIMP signal e+&e- are expected to be quite soft

Ratio

• Tightening upper bound on e+&e- to p < 1.5 GeV could suppress tritrig w/o sacrificing signal

Comparison with tritrig: e+ & e- impact parameters

Impact parameters expected to increase as a function of rhoD mass and vtx z position

- z0 is broader for signals with rhoD>=60 MeV than for lower mass signals
- AI: Worth investigating impact parameters cuts used in vertex analysis

Ratio

Comparison with tritrig: Esum & Psum

SIMP signal e+/e- are expected to be quite soft

Ratio

- Tightening upper bound on Esum to < 1.9 GeV could suppress tritrig w/o sacrificing much signal
 - Basically inverse to cut applied in Tight L1L1 vtx selection

Vtx analysis pre-selection + SIMP "tight" selection (WIP)

Cut Description	Requirement
Trigger	Pair1
Track-cluster match	$\chi^{2} < 10$
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 1.45$ ns
Track-Cluster Time Difference	$ t_{e^+Track} - t_{e^+Cluster} - \text{ offset} < 4 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^-Track} - t_{e^-Cluster} - \text{ offset} < 4 \text{ ns}$
Beam electron cut	$p(e^-) < 1.75 { m GeV}$
Track Quality	$\chi^2/dof < 6$
Vertex Quality	$\chi^{2}_{unc} < 10$
Minimum e^+ Momentum	$p(e^+) > 0.4 \mathrm{GeV}$
Minimum e^- Momentum	$p(e^-) > 0.4 \mathrm{GeV}$
Maximum Vertex Momentum	$V_{0p} < 2.4 { m GeV}$

- e+&e- with hit in L1: pass L1L1
- Max sum energy: Esum/Ebeam < 0.83
- Maximum e- momentum: p(e-) < 1.5 GeV
- Maximum e+ momentum: p(e+) < 1.5 GeV
- Maximum vtx momentum: p(vtx) < 2.0 GeV
- No shared hits in L0 for e+&e-: Nshared=0
- One good V0: Nvtx = 1

Plots plots plots....

- Useful to flip between these histos normalized to unit area [linear on left; log on right]
 - Tritrig vs SIMP signals: <u>vtx analysis preselection</u>
 - Tritrig vs SIMP signals: <u>vtx analysis preselection + SIMP "tight" selection</u>

Next steps....

- Move the truth matching in VertexAnaProcessor.cxx to its own class in hpstr
- Investigate cluster-track distance and time matching
 - Get cluster timing info (already have track timing info)
- Study various cuts from TightL1L1 vtx analysis selection, e.g isolation & impact parameters
 - Quantitative optimizations of cuts based on e.g. significance Z=sqrt(2[S+B x log(1+S/B) -S])
- Include WAB & rad bkg samples
- Signal cross sections: use nb Nikita provided to tabulate production rates for given mass points