2016 Displaced Vertex Search

Introduction

- The latest from the displaced vertexing analysis for 2016 data
- I will show results for 10% of the data. It is pending approval from the analysis committee
 - We are nearly ready to unblind the analysis (at least the L1L1 portion)
- Analysis Note on **Overleaf** ask for permission to view
 - Chapters relevant for unblinding are nearly complete
- Presenting a step-by-step guide to the displaced vertex analysis
 - Event selection, signal rates, mass resolution, defining signal regions, computing expected signal yield, setting limits, systematics, and analyzing excess backgrounds

Preselection Cuts

- Cuts are divided into 3 steps cuts in reconstruction (MOUSE), Preselection, and Tight Cuts
- A preliminary set of cuts is used for initial study called "Preselection"
- Preselection cuts include (right):

- Track/cluster timing
- Track/cluster matching
- Vertex quality
- Basic momentum cuts
- No layer requirements... yet
- These are either loose cuts or based on previous analysis cut values

Cut Description	Requirement
Trigger	Pair1
Track-cluster match	$\chi^2 < 10$
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 1.45 \ \mathrm{ns}$
Track-Cluster Time Difference	$ t_{e+Track} - t_{e+Cluster} - \text{ offset} < 4 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^-Track} - t_{e^-Cluster} - \text{ offset} < 4 \text{ ns}$
Beam electron cut	$p(e^-) < 1.75~{\rm GeV}$
Track Quality	$\chi^2/dof < 6$
Vertex Quality	$\chi^2_{unc} < 10$
Minimum e^+ Momentum	$p(e^+) > 0.4 \mathrm{GeV}$
Minimum e^- Momentum	$p(e^-) > 0.4 \mathrm{GeV}$
Maximum Vertex Momentum	$V_{0p} < 2.4$ GeV

Preselection Cutflow

Cutflow for the Preselection cuts for Run 7800 (left) and tritrig-wab-beam (right)

Reconstructed z [mm] MC Inclusive

0 60 80 10 Reconstructed z [mm]

Tight Cuts L1L1

- "Tight Cuts" are used to further reduce background events at high z
- Require layer hits in layer 1 (L1L1) to start, we will relax this requirement later
- Beyond layer requirements, there are 4 main tight cuts that will be discussed in detail

Baditiative sut (1/0 momentum)		Cut Description	Requirement	
0	Raditiative cut (vo momentum)	Lover 1 Requirement	a^+ and a^- have 1.1 hit	
0	V0 projection to the target	Layer 2 Pequirement	e^+ and e^- have 12 hit	
0	Isolation cut (for mistracking)	Layer 2 Requirement		
O Impact Parameters			$V_{0p} > 2.0 \text{ GeV}$	
		VU projection to target	Fitted 2σ cut	
Easy to demonstrate cut effectiveness,		Isolation Cut	Eq. 7	
it is	tough to rigorously justify a specific	Impact Parameters	Eq. 10	
1010				

cut value due to lack of precise knowledge of background shape

Removed V0 position cut and tighter vertex quality cut (redundant with other cuts)

Radiative Cut

- A minimum cut on the V0 momentum (radiative cut) is warranted since A's take most of the beam energy
- A's are kinematically identical to radiative tridents, thus the Psum cut can be optimized as sqrt(Rad)/Tridents
- This same method is used by the resonance search (cut is at 1.9 GeV)
- Vertexing mass range of interest is ~0.060 GeV - 0.150 GeV, so a minimum cut of **2.0 GeV is selected**

Radiative Cut

• The effect of the radiative cut on 10% data (left) and 80 MeV A' (right)

- Signal should have the VO projection to the target close to the beamspot
- The run-by-run fitted mean and σ , these values are used for a run-by-run cut
- Constant fitted values for mean and σ are used in MC

- Coordinates are rotated in order to remove x-y correlation
- The rotated coordinates are transformed into nσ deviation from the mean (significance) using run-by-run values in data
- An elliptical cut is made in this space. Cut value is selected at 2σ
 - (Really this is a circular cut in significance space)

Rotated V0 Projection To Target No Data 10% L1L1

Hatio

 The effect of the V0 projection to the target on 10% data (left) and 80 MeV A' (right)

Isolation Cut

- Isolation cut is designed to eliminate high z events due to mistracking in L1
- This is a simple geometric cut: $\delta + \frac{1}{2}z 0_{corr} > 0$
 - $\circ~$ z0_corr is the vertical impact parameter at the target, δ is minimum distance between 1D hits
 - The factor of ½ comes from the ratio of the distance between L2 and L1 and L2 and the target is ~½

Isolation Cut

• The simple geometric cut fails to account for multiple scattering. This is a small effect but was enough to be a major source of high z backgrounds in 2015 data

• Including multiple scattering errors: $\delta + \frac{1}{2}z0_{corr} > 0 \longrightarrow \delta + \frac{1}{2}(z0_{corr} - n_{\sigma} \Delta z0_{corr}) > 0$

Isolation Cut

- The effect of the isolation cut on 10% data (left) and 80 MeV A' (right)
- The signal yield is fairly insensitive to nσ on the track z0 error. 3σ is a reasonable value that eliminates all high z events in MC due to mistracking

Impact Parameter Cut

- Background may have only one large impact parameter (IP) due to one large scatter, while long-lived signal typically has large IP for both e+ and e- tracks
- Require both e+ and e- tracks to have large impact parameters (signal shape is in well-defined bands)

Impact Parameter Cut

- For a given mass, IP cut is linear in z with one tunable parameter α which sets how much signal to eliminate
- The slope of line is parametrized in mass, different for top/bottom
- One tunable parameter α -> cut defined by 5 parameters

 $z0_{+}(m, z, \alpha) > a(\alpha) + b_{0+}(\alpha) z + b_{1+}(\alpha) \frac{z}{m} \text{ or } z0_{-}(m, z, \alpha) < a(\alpha) + b_{0-}(\alpha) z + b_{1-}(\alpha) \frac{z}{m}$

Impact Parameter Cut

• The effect of the impact parameter cut on 10% data (left) and 80 MeV A' (right)

L1L1 Tight Cuts Cutflow

• Cutflow of the tight cuts in the L1L1 category

Final Selection for L1L1

- Finally, remove tracks with shared hits remove duplicate VOs
- Final selection for the L1L1 category for 10% data (right) and MC (right)

Tight Cuts L1L2

- The same method for tight cuts are used as L1L1, but with key differences
- Raditiative cut (V0 momentum)
 - Remains the same
- V0 projection to the target
 - Account for resolution effects
 - Scale resolution from L1L1 by 1.25 for x and 1.5 for y
- Isolation cut (next slide)
- Impact Parameters

Cut Description	Requirement
Layer 1 Requirement	e^+ xor e^- have L1 hit
Layer 2 Requirement	e^+ and e^- have L2 hit
Radiative Cut	$V_{0p} > 2.0 \mathrm{GeV}$
V0 projection to target	Fitted 2σ cut
Isolation Cut	Eq. 7 or Eq. 12
Impact Parameters	Eq. 10

- Same method is used as L1L1, but different 5 parameters
- Require no shared hits and no duplicate VOs as in L1L1

Isolation Cut L1L2

- The L1L2 isolation cut is different since the distance between the the first layer hit and the target are different
- The track with the layer 1 hit has the same isolation cut requirements as L1L1
- The track with the layer 2 hit has a different isolation cut requirement than L1L1
 The factor of ¹/₃ comes from the ratio of the distance between L3 and L2 and L3 and the target is ~¹/₃

$$\delta + \frac{1}{3} \left(z 0_{corr} - 3 \Delta z 0_{corr} \right) > 0$$

L1L2 Tight Cuts Cutflow

Cutflow of the tight cuts in the L1L2 category. Next, remove shared hits and duplicate V0s
 Reconstructed z [mm] Data L1L2 Inclusive
 Reconstructed z [mm] tritrig-wab-beam L1L2 Inclusive

Final Selection for L1L2

- The final selection for the L1L2 category. This still needs more work
- THe L1L2 category is dominated by hit efficiency effects that aren't in the MC
 - To do: Run the hit killing algorithm (explained later) and reconstruct tracks + V0s

Signal and Background Rates

- To get the expected signal rate:
 - Get the fraction of radiative tridents from MC (radiative fraction)
 - Obtain number of e+e- pairs from data, compute expected signal as a function of mass and ε
 - Displace the signal over a range of z
- First, find the radiative fraction using preselection + cuts shared with mutually exclusive categories

 $f_{rad}(m) = \frac{d\sigma_{rad}/dm(m)}{d\sigma_{tri}/dm(m) + d\sigma_{cWAB}/dm(m)}$

Cut Description	Requirement
Preselection	<u>-</u> 2
Layer 2 Requirement	e^+ and e^- have L2 hit
Radiative Cut	$V_{0p}>2.0~{ m GeV}$

Radiative Fraction

- The radiative fraction is found the same way as bump hunt using the ratio of truth-matched radiatives (using truth mass) to reconstructed mass of tridents + wabs
- To do: Hit efficiency and momentum smearing effects needs to be applied

25

Expected Signal Produced

- From the radiative fraction f_{rad} and the number of e+e- pairs N_{bin} in a small mass bin of $\delta m_{A'}$, the number of signal events as a function of mass and ϵ is $S(m_{A'}, \epsilon) = f_{rad} N_{bin} \frac{3\pi \epsilon^2}{2N_{eff} \alpha} \frac{m_{A'}}{\delta m_{A'}}$
 - Mass window is 1 MeV
 - Plot on the right shows the number of expected A's in prompt acceptance for 10% data

Displaced A' Rates

- Once A's are produced at the target, they are displaced and end up in 1 of 3 mutually exclusive categories based on the first layer hit on track
 - L1L1, L1L2, and L2L2 (only L1L1 and L1L2 are used in this analysis)
- Data has hit efficiencies, current MC does not
 - Need to incorporate hit killing algorithm as a function of track slope (Matt G.)

Displaced A' Rates

- Several options for tracks using the hit killing algorithm
 - Passes hit killing -> nothing changes
 - Fails hit killing and has 6 hits -> migrates to the appropriate category (e.g. one track in L1L1 fails, event moves to L1L2)
 - Fails hit killing and has 5 hits -> events is eliminated
- Results of hit killing shown to the right
- Fit a function to the sum and normalize it to 1 at the target $\epsilon_{vtx,sum}(z_{targ}, m_{A'}) = 1$

Displaced A' Rates

Normalized A' Acceptance * Efficiency 80 MeV A'

- Left: Apply the normalization factor, and then apply the remaining analysis cuts to each of the individual categories (the sum is no longer 1 at the target)
- Right: Apply the zcut (explained later) to the reconstructed z in each category

Mass Resolution

- The same method as bump hunt for mass resolution is used track momentum smearing and rescaling the mass resolution (except uses unconstrained VOs)
- Scaled and smeared resolution does not agree well
- A' smeared resolution is parametrized as a function of mass and used as the input to the analysis
- A' mass resolution is ~independent of z
- Prompt A's with the same selection as radiative fraction are used for mass resolution (needs to be compared)

Mass Slices

- Data/MC are sliced into mass bins of 1.9σ
- Examples at two different mass slice comparisons are shown below (with means shifted). Data is consistently slightly wider than MC

Mass Slices and Background Fits

 Fit each mass slice with a Gaussian + exponential tail (shown right)

$$F(\frac{z-\mu_z}{\sigma_z} < b) = Ae^{-\frac{(z-\mu_z)^2}{2\sigma_z^2}}$$
$$F(\frac{z-\mu_z}{\sigma_z} \ge b) = e^{-\frac{b^2}{2} - b\frac{z-\mu_z}{\sigma_z}}$$

 Same fit function is attempted for L1L2 (works well, but with longer tail)

98.9 MeV < Mass < 107.9 MeV 10 Percent Data L1L1

Computing Expected Signal Rate

- Number of A's produced in prompt acceptance: $S_{bin}(m_{A'}, \epsilon)$
- Truth signal distribution: $S_{truth}(z, m_{A'}, \epsilon) = \frac{e^{-(z_{targ}-z)/c\tau}}{\gamma c\tau}$
 - Normalized such that $\int_{z_{targ}}^{\infty} S_{truth}(z, m_{A'}, \epsilon) dz = 1$
- Efficiency normalized to 1 at target: $\epsilon_{vtx,sum}(z_{targ}, m_{A'}) = 1$
- Efficiency from layer i and layer j requirements, further cuts, and hit efficiency effects: $\epsilon_{vtx,LiLj}(z, m_{A'})$
- Total acceptance x efficiency: $\epsilon_{vtx,sum}(z, m_{A'}) \epsilon_{vtx,LiLj}(z, m_{A'})$
- Total expected rate in LiLj category:

$$S_{bin,zCut,LiLj}(m_{A'},\epsilon) = S_{bin}(m_{A'},\epsilon) \int_{z_{targ}}^{z_{max}} S_{truth}(z,m_{A'},\epsilon) \epsilon_{vtx,sum}(z,m_{A'}) \epsilon_{vtx,LiLj}(z,m_{A'}) dz$$

Expected Signal Rate L1L1

- Total expected signal in the L1L1 category for 10% data (left) and scaled (right)
- "Scaled" takes into account both increased e+e- pairs and increased zcut

Expected A' Rate L1L1 Data 10%

Expected A' Rate L1L1 Data 10% Scaled

Expected Signal Rate L1L2

• Total expected signal in the L1L2 category for 10% data (left) and scaled (right)

Expected A' Rate L1L2 Data 10% Scaled

• The L1L2 category adds ~30-40% in signal expectation

Expected A' Rate L1L2 Data 10%

Setting Limits

- The Optimum Interval Method (OIM) is used to set a limit
 - With only 10% of 2016 data, we already show a better limit than 2015 full data
- Also working on a method of cut-and-count significance (not ready to show yet)

Combining L1L1 and L1L2

- Combining L1L1 and L1L2 datasets
 - Expected signal rate can be added trivially
 - Combining limits is still being explored
 - Expected A' Rate L1L1 + L1L2

Expected A' Rate L1L1 + L1L2

High Z Events

- Understanding high z events (i.e. those that are significantly past zcut) in both data and MC are important to learn from this analysis
- The strategy is to use all of our tools look at reconstructed distributions, truth distributions, truth scattering angles (these are correlated), and event displays

Δz_{cut}	VZ (mm)	Mass (MeV)	Run	Event	χ^2_{unc}	V0 Proj Y (n_{σ})	VY (n_{σ})	$\Delta e^- z0$ (mm)	$\Delta e^+ z0 \text{ (mm)}$
1.98	11.71	84.68	7629	28025546	0.51	0.85	1.54	0.76	0.46
0.03	7.36	109.39	7796	69130629	3.91	1.50	1.53	0.17	0.46
0.15	11.80	71.10	7800	29833655	0.14	0.21	0.10	0.54	0.34
11.74	23.33	71.48	8029	4393084	1.52	1.24	2.95	1.07	1.38
0.39	12.49	68.20	8029	95533848	0.04	0.82	0.94	0.27	0.58

Table 27: A table of relevant variables for events past z_{cut} for 10% of the data in the L1L1 category.

*This table uses an older zcut, but it still illustrates interesting features of high z events

Systematics

- Possible sources of systematics include
 - Mass resolution comparing the amount of signal leaking in/out of a mass bin
 - Radiative fraction and e+e- composition method can be shared with bump hunt
 - Target position at +/- 0.5 mm comparing the truth distributions for different target positions
 - Analysis cuts IP cut, isolation cut, and V0 projection to target
 - Fit to the background distribution and zcut estimated to be very small
 - A' efficiency curves both the interpolation method and the fit used for normalization

Future of Displaced Vertexing Analysis

- Require e+e- to both miss layer 1 (L2L2 category) in 2016 Data
 - I will do the same method as L1L1 and L1L2 apply tight cuts, compute zcut and expected signal yield, compute limit, and explore high z events (L1 trident production?)
 - This will not be a part of the standard analysis. Preliminary estimates show that is will add ~15% to the analysis. It will be in my thesis and important for future analysis
- SIMPs in 2016 Data (see Stany's talk) or Generalized Displaced Vertices
 - A similar method to the "standard" analysis can be performed
 - The key difference is lower V0p (below the radiative cut) due to the missing energy of the dark pion (mutually exclusive with A' analysis)
 - Added difficulties: model is 6 parameters and increased high z backgrounds at low VOp
- 2019 Displaced Vertexing Analysis (see Cameron's projections)

Conclusion

- 2016 Displaced Vertex Search is showing significant progress
 - L1L1 is almost ready to unblind, I am still working with the analysis committee to finalize the last details of the analysis. Expect these results soon
 - L1L2 needs some more work to understand backgrounds incorporate hit inefficiencies in MC indirectly
 - We are on pace to be ready to complete the analysis (and graduate!) by the July/August time frame
- Results on 10% of the data for L1L1 is nearly complete and presented here
 - These results are already comparable to the full dataset of 2015 in both signal expectation and exclusion

MOUSE Cuts

Cut Description	Requirement
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 2.5~{ m ns}$
e^+ Track-Cluster Time Difference	$\left t_{e^+Track}-t_{e^+Cluster}-55\right <10~{\rm ns}$
e^- Track-Cluster Time Difference	$\left t_{e^-Track}-t_{e^-Cluster}-55\right <10~{\rm ns}$
Ecal clusters in opposite volumes	y_{e^+} Cluster $ imes y_{e^-}$ Cluster < 0
Loose track-cluster match	$\chi^{2} < 15$
Beam electron cut	$p(e^-) < 2.15 \mathrm{GeV}$
Track Quality	$\chi^2/dof < 12$
Maximum Vertex Momentum	$V_{0p} < 2.8 { m GeV}$

Cut Description	Cut	Description	
-----------------	-----	-------------	--

Requirement

SLAC

Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 5$ ns
Track-Cluster Time Difference	$\left t_{e^+Track} - t_{e^+Cluster} - 43\right < 10 \text{ ns}$
Track-Cluster Time Difference	$\left t_{e^-Track} - t_{e^-Cluster} - 43\right < 10 \text{ ns}$
Ecal clusters in opposite volumes	y_{e^+} Cluster $ imes y_{e^-}$ Cluster < 0
Loose track-cluster match	$\chi^{2} < 15$
Beam electron cut	$p(e^-) < 2.15 \mathrm{GeV}$
Track Quality	$\chi^2/dof < 6$
Maximum Vertex Momentum	$V_{0p} < 2.8$ GeV

- There is an x-y correlation in both data (~2.2 degrees) and MC (~6.4 degrees)
- Coordinates are rotated in order to remove this correlation

V0 Projection To Target Data 10%

Rotated V0 Projection To Target Data 10%

Duplicates Tracks and V0s

SLAC

Tight Selection Comparing Tracks with Shared Hits tritrig-wab-beam L1L1

Preselection Cut Flow

Optimum Interval Method Dummy Event

SLAC

