

Sparse Segmentation for Particle ID in ProtoDUNE

Carlos Sarasty Segura 19th June 2020 NPML workshop: lightning talks

Outline

- The ProtoDUNE-SP Detector
- Definition of the ground truth
- Training
- Summary

The ProtoDUNE-SP Detector

- Is the prototype of the DUNE Single Phase (SP) far detector technology
 - Full scale components
- Total liquid argon (LAr) mass of 0.77 kt
 - World largest LArTPC built to date using SP technology
- Exposed to a dedicated charge particle beam (0.3-7 GeV/c)
 - Similar momenta to those of particles produced in neutrino interactions at DUNE
- Currently exposed to cosmic rays

The ProtoDUNE-SP Detector

- Cathode Plane Assemblies (CPA)
 - Held at 180 kV
 - Provides an E field 500 V/cm in each of the 3.6 m drift regions
- 6 Anode Plane Assemblies (APA)
 - 6 m long x 2.5 m wide
 - 3 planes of sense wires/APA oriented at different angles
 - 15360 sense wires (99.74% active channels)
- Photon Detection System (PDS)
 - Light collecting bars read out by SiPMS installed in the APA frame (10 detectors/ APA)
 - 3 different versions installed

Overview of LArTPC Reconstruction

Signal Formation

Noise Filtering & Signal Processing

Semantic Segmentation

• Apply sparse CNNs for the task of semantic segmentation at a pixel level in ProtoDUNE

Network Architecture

Figure from: arXiv:1903.05663v3 Check Ron's talk for details: Using Sparse Convolutional Neural Networks in <u>MicroBooNE</u>

- **U-ResNet** implementation for semantic segmentation
 - Down-sampling part: learn at multiple scales
 - Up-Sampling & Concatenate : Restore the original image resolution

Ground Truth

- Classify each pixel into 6 different classes for supervised learning
 - Muons
 - · Pions
 - · HIP \rightarrow Protons, kaons & nuclei
 - Showers
 - Michel electrons
 - Diffuse activity
 - Record the fraction of energy deposited by each class per pixel

Training in 3D

• Features:

• 7 features (3 coordinates per hit, integrated charge per plane per voxel, number of hits per voxel)

• Dataset

Consist of 70k 3D event displays split into 95% and 5% for train and test respectively

Results

• We calculate the accuracy of each class

True labels - bifuse -

Pion-Proton Separation

Summary and Future Plans

- These results show a very good performance of the network for the task of semantic segmentation at a pixel level.
- Pions can be well separated from protons using Deep Learning-based algorithms.
- Retrain the network using a single-particles dataset.
 - This dataset will use the refactored g4 simulation available in LArSoft which gives us valuable information of the shower daughters.
- Test the capability of the model for electron and photon separation as well as muon and pion separation.

Summary and Future Plans

Comments and suggestion are more than welcome

Thanks :)

Backup Slides

Results

	. <u>r</u>	0.00056	0.021	0.01	0.0048	0.013	0.12	0.011	0.82		
True label	nu -	0.001	0.0029	0.013	0.15	0.03	0.0075	0.78	0.022		- 0.75
	hip -	0.0011	0.037	0.035	0.014	0.014	0.71	0.013	0.18		- 0.60
	ichel	0.0033	0.022	0.026	0.024	0.89	0.0064	0.016	0.0098		- 0 45
	delta m	0.0035	0.033	0.062	0.77	0.037	0.0071	0.075	0.011		0.45
	ffuse	0.0062	0.038	0.8	0.025	0.041	0.061	0.014	0.015	·	- 0.30
	h_sh dit '	0.082	0.7	0.088	0.053	0.024	0.024	0.0035	0.025	·	- 0.15
	e_sh_p	0.83	0.11	0.036	0.0049	0.0062	0.0035	0.0019	0.0042		
		e_sh	ph_sh	diffuse	delta Assigne	michel ed label	hip	mu	pi		

Electron-Photon Separation

• Preliminary results of electron and photon separation

