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Introduction 
• MicroBooNE is a Liquid Argon Time Projection Chamber 

(LArTPC) experiment investigating the MiniBooNE low-energy 
excess [1] with the Fermilab Booster Neutrino Beam (BNB) 

• Wire readout LArTPCs record particle interactions as 2D images 
of  deposited charge on a  wire vs. time  

• To reconstruct 3D particle trajectories one has to associate 
charge deposited on the 3 wire planes at the same time
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Example Inference on Data  
• Colored points are 3D reconstructed space-points in a BNB electron 

neutrino event in data. Neutrino selection criteria described in [3]. BDT 
score between 0.5 and 0.7 required. Red circles represent light seen by 
PMTs. Proton track & electron shower of CCQE neutrino clearly seen. 

• Color represents network score for each reconstructed point. Yellow: high 
score, blue: low score. Only plotting points with scores above 0.5

LArMatch Algorithm 
• Takes in 2D LArTPC images and outputs 3D 

reconstructed positions of charge deposition 
• Image pre-processing: identify all geometrically 

possible combinations of same-time charge on the 3 
wire readout planes (wire triplets) 

• Inference: sparse CNN generates feature vectors for 
each triplet. MLP scores the probability that a triplet 
is a true charge deposition from 0.0 (low confidence) 
to 1.0 (high confidence) 

• Post processing: form a 3D point for each triplet 
using detector geometry

Network Training 
• Network was trained on a sample of 40,000 simulated images 

of BNB neutrino interactions and multiple cosmic rays 
• Using binary cross entropy loss 
• For each iteration fed the network 50,000 wire triplets. 

Trained for a total of 300,000 iterations (3.75 epochs) without 
observing divergence

Network loss vs. # iterations Accuracy vs. # iterationsWire plane images of chargeLArTPC working principle

Performance 
• Multiple predictions for every true simulated point. Best-

match: prediction with highest network score. 
• 3D point considered “good” if within 1 cm of true point

Network implementation in Pytorch [2]

Good 3D point efficiency vs. bad point rejection as a function of network 
score for track (left) and shower (right) topology. ROC curve proves network 

score representative of actual 3D point goodness.

Future Work 
• Estimate systematic uncertainty of 3D point reconstruction using simulation 

samples with different detector configurations and signal processing methods

• Further optimize network architecture

Integrated fraction of good reconstructed points as a function of distance to 
track/shower axis for neutrino-induced track (left) and shower (right) points, 
best-match only. Integrating within a radius of 5 cm collects >99% of  good 

track and >95% of good shower points.

Distance from true point vs. azimuth angle for best-match reconstructed 
track 3D points (left). Dominated by cosmic tracks.  Projection for vertical 
tracks (right). Performance robust in vertical tracks (hard to reconstruct).
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