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3. Gaussian Process to Optimize Confidence Interval Search

* A Gaussian Process (GP) is a collection of random variables, any

* Neutrino oscillation proves that neutrinos have mass and that the finite number of which have joint Gaussian distributions. Each
neutrino mass eigenstates are not their flavor eigenstates. For 3- draw from a GP distribution is a function with values 7(x)
generation SM neutrinos, the transformation of mass eigenstates * A GP can be completely specified by its mean function p(x) and

into favor eigenstates is parameterized by the PMNS matrix: its kernel function k(x,x’)
( f(x ) ~ N({ j(x) } | [ k(x,x)  k(x,x') ) * Note for each point in parameter space we still use frequentist approach to determine p-value
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1. Neutrino Oscillations
* A GP is uniquely characterized by its kernel function k. A common choice of GP kernal k is the squared exponential radial basis
function (RBF), k(x,, X,) = exp(-[(X;-X,)/]2) with a length-scale /. This kernel tells us that GP results at nearby points are highly

iInfluenced by observations at a given point while further out, they aren't.
* |In each iteration, kernel hyperparameter / is learned via maximizing the likelihood of current set of observations marginalized over

the function distribution f(x)
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probabilities vs. neutrino | k(x,x) k(x. x) :
energy at given propagation . 6NH,=si(r(1)26§3)=0.44 | | | . o
distance to infer parameters or = 2 * Update GP p-value functions iteratively based on points
in Upyns and neutrino mass- gl . . s_in(2£)22=)0.56 where p—valueg. have been calculated by a smaI.I number of
squared splitting Am2,,, and op = 5 27 pseudo.-exp.erlments. Use GP mean p-value to identify
A2 new points lie on boundary of interval to generate new
M=, od] pseudo-experiments.
Long-baseline (LBL) neutrino
oscillations can solve the CP
phase 8, the mass hierarchy s 4 5 4. Toy Experiment S. Results
Amz4,>0 (NH) or <0 (IH), and ADCIIVACEIEE | Pseudo-experiments modelled on NOvA: Baseline L = 810km with NOVA flux peaking at 2GeV; Oscillation Use acquisition function to determine where to throw pseudo-experiments in
the octant of 0, parameters similar to 2018 best estimate from NOVA (B, = 0.56, Am2,, = 2.44 x 10-3eV?2, 5, = 1.5m). parameter space (/) : ¢(0) is GP mean, 94(6) is GP variance, ¢; are confidence

levels 68% and 90%

* Neutrino energy spectrum simulated by multiplying toy shapes for flux, cross-section and oscillation probability = - : : :
Finding FC contour edges and 0. rejection regions with much less experiments

» Appearance v, -> Vv, and disappearance v ,-> Vv, are simulated
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2. Statistical Issues and Feldman-Cousins (FC)

Arbitrary Units

-—= 90% FC

- : -== 68% FC
acquisition function 44 — 90% cp
OQ(H) 687% GP

q

Neutrino oscillation parameters are typically measured via Maximum
Likelihood Estimation (MLE) using the underlying PMNS model and
comparing it to observation such as energy spectrum

Due to the low statistics and physical boundaries, confidence
intervals are hard to find as Likelihood Ratios (LR) = -2log[L(H,)/L(H,)]

are not asymptotic x2-distributions.
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Significance

* Toy data generated from Poisson variations at some chosen oscillation parameters
* Best-fit found by minimizing negative log-likelihood over energy bins
* Fitting parameters includes oscillation and nuisance (flux and xsec errors) parameters
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6. Accuracy and Speed

* GP method converges to the FC value 10x faster for 2D case and 5x for 1D case
* Estimate classification accuracy of all grid points, taking FC result as truth
* Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)
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Feldman-Cousins approach: _
* Explicitly simulate LR distributions with pseudo-experiments at D_OI' 1 O"! 1 (_)S/PhySRe,VD'1 01.012001
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each point in parameter space and compute p-value - :
* A grid search over the entire parameter space with many toy MC - Nitish Nayak, nayakb@uci.edu
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