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4. Toy Experiment 5. Results

• Neutrino oscillation proves that neutrinos have mass and that the 
neutrino mass eigenstates are not their flavor eigenstates. For 3-
generation SM neutrinos, the transformation of mass eigenstates 
into favor eigenstates is parameterized by the PMNS matrix: 

1. Neutrino Oscillations

• Pseudo-experiments modelled on NOvA: Baseline L = 810km with NOvA flux peaking at 2GeV; Oscillation 
parameters similar to 2018 best estimate from NOvA (θ23 = 0.56, Δm2

32 = 2.44 x 10-3 eV2, δCP = 1.5π).

• Neutrino energy spectrum simulated by multiplying toy shapes for flux, cross-section and oscillation probability

• Appearance νμ -> νe and disappearance νμ -> νμ are simulated

• GP method converges to the FC value 10x faster for 2D case and 5x for 1D case

• Estimate classification accuracy of all grid points, taking FC result as truth

• Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)
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• Neutrino experiments 

measure oscillation 
probabilities vs. neutrino 
energy at given propagation 
distance to infer parameters 
in UPMNS and neutrino mass-
squared splitting Δm2

32 and 
Δm2

21

• Long-baseline (LBL) neutrino 

oscillations can solve the CP 
phase δ, the mass hierarchy  
Δm2

32>0 (NH) or <0 (IH), and 
the octant of θ23

• Neutrino oscillation parameters are typically measured via Maximum 
Likelihood Estimation (MLE) using the underlying PMNS model and 
comparing it to observation such as energy spectrum


• Due to the low statistics and physical boundaries, confidence 
intervals are hard to find as Likelihood Ratios (LR) = -2log[L(H0)/L(H1)] 
are not asymptotic χ2-distributions.
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Feldman-Cousins approach: 
• Explicitly simulate LR distributions with pseudo-experiments at 

each point in parameter space and compute p-value

• A grid search over the entire parameter space with many toy MC - 

time consuming

• A Gaussian Process (GP) is a collection of random variables, any 
finite number of which have joint Gaussian distributions. Each 
draw from a GP distribution is a function with values f(x)


• A GP can be completely specified by its mean function μ(x) and 
its kernel function k(x,x’)

• A GP describes a distribution over functions. Use Bayes’ 
rule, GP function distributions can be predicted based on 
points with known function values f(x)
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• A GP is uniquely characterized by its kernel function k. A common choice of GP kernal k is the squared exponential radial basis 
function (RBF), k(x1, x2) = exp(-[(x1-x2)/l]2) with a length-scale l. This kernel tells us that GP results at nearby points are highly 
influenced by observations at a given point while further out, they aren't.


• In each iteration, kernel hyperparameter l is learned via maximizing the likelihood of current set of observations marginalized over 
the function distribution f(x) 

• Note for each point in parameter space we still use frequentist approach to determine p-value

IH, Iteration 1 IH, Iteration 5
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• Toy data generated from Poisson variations at some chosen oscillation parameters

• Best-fit found by minimizing negative log-likelihood over energy bins

• Fitting parameters includes oscillation and nuisance (flux and xsec errors) parameters
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• Use acquisition function to determine where to throw pseudo-experiments in 
parameter space (   ) :         is GP mean,           is GP variance,       are confidence 
levels 68% and 90%


• Finding FC contour edges and δCP rejection regions with much less experiments
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• Update GP p-value functions iteratively based on points 
where p-values have been calculated by a small number of 
pseudo-experiments. Use GP mean p-value to identify 
new points lie on boundary of interval to generate new 
pseudo-experiments.
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