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Neutrino Oscillations

I Neutrino oscillations between flavor states occur with a well defined probability which depends on
the UPMNS mixing matrix

I LBL experiments (focus of this talk) measure P(⌫µ ! ⌫µ) and P(⌫µ ! ⌫e) to infer :

I �m2
32 > 0 or < 0? (Normal or Inverted)

I Identifying mass hierarchy (NH or IH) has
implications for neutrino mass measurements

I Octant of ✓23 or ✓23 = 45�?

I sin�CP 6= 0?
I Lepton sector CP-violation. Gives us a clue towards

explaining matter-antimatter asymmetry
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Statistical Issues

I Experiments collect only a handful of
statistics. O(10� 100) over years of operation
for the ⌫µ ! ⌫e channel

I Complicated interplay between di↵erent
parameters =) di�cult to delineate

I Confidence Intervals are hard to find as
Likelihood ratios don’t satisfy asymptotic
properties.

I Let’s illustrate this with a toy experiment..
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Toy Experiment
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I Create a toy NOvA-like experiment. Data (~x) generated from Poisson variations at some chosen
oscillation parameters.

I With (✓, �) denoting list of oscillation and nuisance (flux and xsec errors) parameters,
I Best-fit (✓̂, �̂) found by minimizing negative log-likelihood over energy bins, i

�2 log L(✓, �) = �2
X

i2I

logPois(xi ; v(✓, �)i )�
X

i2I

xi +
X

i2I

v(✓, �)i + �2
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Confidence Intervals
I Likelihood Ratio Tests (LRT) (��2 from global best fit) typically used for estimating confidence

intervals.
I In asymptotic case, test statistic : ��2 ⇠ �2

k =) look up significance from PDG (Wilks’
Theorem)

I In others =) Feldman-Cousins, i.e

I Explicitly simulate ��2 distribution using lots of
pseudo-experiments

I Find p-value associated with ��2
data

I Gather all parameter values for which, say,
percentile = 1� p < 0.68 to get 1-� interval

I Correct coverage by construction

I Very heavy computational burden, often millions
of CPU-hours needed!
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A more e�cient FC

I In practice, FC proceeds via a grid search, for eg, simulating ��2 distributions for every point in
sin2 ✓23 � �CP space to find the 1-� contour

I If you had perfect foresight however, only the 1-� boundaries are needed, but obviously not known
apriori

I Can we get an idea of how this surface looks like
with a few pseudo-experiment throws?

I Can we then use this approximate surface to tell us
where those boundaries lie?
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Gaussian Process

I Special case of Bayesian Learning. Assume p-value approximation is a random variable with a
multivariate gaussian distribution

I We say, f ⇠ GP(µ, k(·, ·)) if
✓

f (x)
f (x 0)

◆
⇠ N (


µ(x)
µ(x 0)

�
,


k(x , x) k(x , x 0)
k(x , x 0) k(x 0, x 0)

�
).

I Intuitively, we can picture each draw from a GP(µ, k(·, ·)) giving us a di↵erent f (x) with the
average result being µ(x)

I The kernel encodes the correlation between nearby points. A commonly used kernel is the radial
basis function, k(x , x 0) = exp(�(x � x

0)2/l2)

I A RBF kernel tells us that GP results at nearby points are highly influenced by observations at a
given point while further out, they aren’t.
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Why GPs?

I Enormously flexible! Can basically approximate any
well behaved function with an appropriate choice of
the kernel.

I Predictions at new data points are posterior
distributions calculated with basic linear algebra, i.e
for GP(0, k(·, ·)) :

f (x 0)|f (x) ⇠ N (
k(x , x 0)
k(x , x)

f (x), k(x 0, x 0)� k(x , x 0)2

k(x , x)
)
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I Kernel hyperparameters can be learned and updated iteratively as well
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Optimised Confidence Interval Search

I Use a priority score that guides the CI search in ✓-space based on GP approximated p-value
surface.

a(✓) =
X

↵i

| �q̂(✓)

q̂(✓)� ↵i
|

I Here, q̂(✓) is GP mean, �q̂(✓) is GP uncertainty, ↵i is chosen to be (0.68, 0.90)

I
a(✓) balances between exploration, i.e MC experiments at new points and exploitation, i.e
reducing GP error
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2✓23 = 0.56,
�m

2
32 = 2.44⇥ 10�3

eV

2, �CP = 1.5⇡)

I
sin

2✓23 � �CP 68% and 90% CI for IH after 5 iterations

I Grayscale denotes number of experiments thrown in relation to FC (2000)

I Algorithm does a good job of finding the FC contour edge!
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2✓23 = 0.56,
�m

2
32 = 2.44⇥ 10�3

eV

2, �CP = 1.5⇡)

I
sin

2✓23 � �CP 68% and 90% CI for NH after 5 iterations
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Results

I 200 di↵erent runs for ”real” data at the same point as before.

I Use classification accuracy of all grid points, taking FC result as truth, to evaluate performance.

I Progress shows the search algorithm converges to the FC value ⇠ 10⇥ faster for 2D case and
⇠ 5⇥ for 1D case

I Median Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)

I Mean Accuracies for 1D is 98.5% (99.8%) for NH (IH), for 2D is > 99% (both NH, IH)
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Summary and Conclusions

I Neutrino oscillation experiments provide interesting test case for estimating frequentist confidence
intervals

I LBL experiments typically proceed via Feldman-Cousins

I However, simulating ��2 distributions across multi-dimensional parameter space requires huge
computational resources

I We’ve studied a Bayesian approach using Gaussian processes on a toy LBL set-up

I Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the
entire parameter space!

I Order of magnitude gain in computation!

I See PRD publication for more details : Phys.Rev.D 101 (2020) 1, 012001

I All code with illustrative notebooks here : https://github.com/nitish-nayak/ToyNuOscCI,
maintained by Lingge (linggeli7@gmail.com) and myself (nayakb@uci.edu)
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Toy Experiment

I Modelled on NOvA. Baseline, L = 810km with ⌫µ flux peaking at 2GeV

I ⌫µ ! ⌫e by multiplying toy shapes for flux, cross-section and oscillation probability.

I 10% normalisation errors on flux and xsec model
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I
P(⌫µ ! ⌫e) using 3-flavor PMNS with MSW corrections added for matter propagation.

I Similar setup for ⌫µ ! ⌫µ to constrain sin

2(2✓23) and |�m

2
32| but with 2-flavor approximation

I
P(⌫µ ! ⌫µ) ⇠ 1� sin

2(2✓23)sin2(�m

2
32L/4E)
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GPs for FC

I Fitting a GP to target p-value surface for a given contour. (Stochasticity of the target surface)

I ”Observation” at a given point in parameter space, ✓ means simulating the LRT distribution and
finding the p-value of crit(✓)

I Choose a RBF Kernel with an additional term incorporating variance of p-value estimate at ✓.

I
k(·, ·) = kRBF (·, ·) + �2

pI

I The additional variance encodes the binomial error
resulting from throwing finite number of
experiments to simulate the LRT distribution at ✓

I Allows us to incorporate varying number of
experiments thrown into the CI search, reducing
computational burden further.
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2✓23 = 0.56,
�m

2
32 = 2.44⇥ 10�3

eV

2, �CP = 1.5⇡)

I Significance of rejecting �CP only after 5 iterations. (p-value converted to Z-score significance)
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GP Technical Details

I Rasmussen and Williams has a good discussion about convergence to true functions in regression
settings (typically using squared loss functions) :
http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

I Well behaved =) expressible as a generalised fourier series of kernel eigenfunctions

I If kernel is non-degenerate, approximation is guaranteed to converge to true function

I If degenerate, convergence towards an L2 approximation of the true function

I Rates of convergence typically depends on mean and kernel smoothness as well as smoothness of
the true function
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GP Fitting

I Hyperparameters (w) learned via maximising log marginal likelihood :

p(y|X,w) =
Z

p(y|X,w, f)p(f|X,w)df

I Clearly,
f|X,w ⇠ N (0,K(X,w))

I Some algebra gives us :

�2 log p(y|X,w) = yTK�1y+ log |K |+ n log 2⇡

I Minimising above equation gives us a good choice for w

I
log |K | acts as a penalty term for complexity and therefore reduces overfitting to data
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GP for FC

I ”Gaussian” not a statement of the underlying distribution of the test statistic, which can still be
heavily non-Gaussian

I Rather, ”Gaussianity” for a stochastic process generating the test statistic distributions.
Stochasticity mostly from finite FC grid resolution or finite number of MC experiments for
simulating the test statistic distribution

I Assumption we’re making for this stochasticity is that it can be parameterised by a kernel
describing the relationship between the distributions at neighbouring points =) multi-variate
gaussian

I Also important to note, no real statement about FC coverage or handling of nuisance parameters.
Assumes FC gives desired level of coverage

I Confidence Intervals still with frequentist interpretation

I Bayesian interpretation for ”classification probability” of points in parameter space for desired
confidence regions

I A good summary would be ”Accelerating Frequentist CI search by estimating CI edges through
Bayesian ML”
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GPs in Literature

I GPs in HEP : arXiv:1709.05681, M. Frate, K. Cranmer et al. Using GPs to describe background
spectra in dijet resonance searches at the LHC non-parametrically.

I Used in Astrophysics for modelling stochasticity of light yields in stars, active galactic nuclei etc

I Many other fields!
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Pseudo-code

Algorithm 1 GP iterative confidence contour finding

for each iteration t = 1, 2, ... do
Propose new points in parameter space argmax✓ a(✓)
for each point ✓0 do

Simulate likelihood ratio distribution
for k = 1, 2, ... do

Perform a pseudo experiment
Maximize the likelihood with respect to (✓, �)
Maximize the likelihood with constraint ✓ = ✓0

end for
Obtain critical value c(✓0)

end for
Update GP approximation ĉ(✓)
Update confidence contours

end for
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Results : NH, sin2✓23 � �CP
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NH, sin2✓23 � �CP
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NH, sin2✓23 � �CP
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NH, sin2✓23 � �m2
32
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NH, sin2✓23 � �m2
32
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NH, sin2✓23 � �m2
32
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