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Neutrino Oscillations

» Neutrino oscillations between flavor states occur with a well defined probability which depends on

the Uppns mixing matrix

» LBL experiments (focus of this talk) measure P(v,

> Am3, >0 or < 0? (Normal or Inverted)

> |dentifying mass hierarchy (NH or IH) has
implications for neutrino mass measurements

> Octant of 633 or 63 = 45°7

> sindcp # 07

> Lepton sector CP-violation. Gives us a clue towards
explaining matter-antimatter asymmetry
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Statistical Issues

> Experiments collect only a handful of

statistics. (10 — 100) over years of operation

for the v, — ve channel

» Complicated interplay between different
parameters = difficult to delineate

» Confidence Intervals are hard to find as
Likelihood ratios don't satisfy asymptotic
properties.

> Let's illustrate this with a toy experiment..
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Oscillation Probability
NH, sin6,,; = 0.44
d¢p = (0, 27)
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Toy Experiment
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> Create a toy NOvA-like experiment. Data (X) generated from Poisson variations at some chosen
oscillation parameters.

> With (6, d) denoting list of oscillation and nuisance (flux and xsec errors) parameters,
> Best-fit (QA, 3) found by minimizing negative log-likelihood over energy bins, i

—2log L(6,0) = -2 Z log Pois(xi; v(6,8)i) — Zx; + Z v(0,6); + 6
iel iel i€l
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Confidence Intervals

» Likelihood Ratio Tests (LRT) (Ax? from global best fit) typically used for estimating confidence
intervals.

» In asymptotic case, test statistic : Ax> ~ x3 = look up significance from PDG (Wilks'
Theorem)

» In others — Feldman-Cousins, i.e

68% Confidence Contour Threshold

3.0 1
» Explicitly simulate Ax? distribution using lots of

pseudo-experiments 2.5

> Find p-value associated with Ax? 2.0 1

> Gather all parameter values for which, say,
percentile =1 — p < 0.68 to get 1-o interval

LRT Statistic
&

» Correct coverage by construction 1.0 =====—"\-——-§———--

> Very heavy computational burden, often millions 0.5 1 —— Actual

of CPU-hours needed! —-—- Asymptotic

0 m 2m
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A more efficient FC

> In practice, FC proceeds via a grid search, for eg, simulating Ax? distributions for every point in
sin2 03 — dcp space to find the 1-o contour

> If you had perfect foresight however, only the 1-0 boundaries are needed, but obviously not known
apriori

Target Surface

» Can we get an idea of how this surface looks like
with a few pseudo-experiment throws?

» Can we then use this approximate surface to tell us
where those boundaries lie?
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Gaussian Process

> Special case of Bayesian Learning. Assume p-value approximation is a random variable with a
multivariate gaussian distribution

> We say, f ~ GP(u, k(-,-)) if

(e ) s PLaes @b b

> Intuitively, we can picture each draw from a GP(u, k(-,-)) giving us a different 7(x) with the
average result being u(x)

> The kernel encodes the correlation between nearby points. A commonly used kernel is the radial
basis function, k(x, x") = exp(—(x — x')?/I?)

> A RBF kernel tells us that GP results at nearby points are highly influenced by observations at a
given point while further out, they aren't.
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Why GPs?

Gaussian Process

1.0
» Enormously flexible! Can basically approximate any iii;im_
well behaved function with an appropriate choice of 087
the kernel. < 061
» Predictions at new data points are posterior g
distributions calculated with basic linear algebra, i.e & 0.4 1
for GP(0, k(-,-)) : 0
k(x,x") ;o k(x,x)?
F(X)|F(x) ~ N(~2=2F(x), k(x', x") = =222 0.0 1= . .
CONFG) ~ N P00, K x) = 570 : : -

» Kernel hyperparameters can be learned and updated iteratively as well
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Optimised Confidence Interval Search
> Use a priority score that guides the Cl search in 6-space based on GP approximated p-value
surface. Ga0)
a(0) = Aqi
0= 5525

> Here, §(6) is GP mean, o49) is GP uncertainty, a; is chosen to be (0.68,0.90)

> a(f) balances between exploration, i.e MC experiments at new points and exploitation, i.e
reducing GP error

Target Surface Priority
100
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1-p o8
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=
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dcp
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1-p

IH

Iteration 1


Optimised Confidence Interval Search

> Use a priority score that guides the Cl search in 6-space based on GP approximated p-value

surface. 400)
j : g
a(0) = 50 — o §(0) — ai

> Here, §(6) is GP mean, og4) is GP uncertainty, «j is chosen to be (0.68,0.90)

> a(f) balances between exploration, i.e MC experiments at new points and exploitation, i.e
reducing GP error

Target Surface Priority
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IH

Iteration 5


Results

» "Real” data similar to latest best-fit estimate from NOVA. (sin2023 = 0.56,
Ami, =2.44 x 103eV?, §cp = 1.57)

> sin*0x — dcp 68% and 90% ClI for IH after 5 iterations

Sampled Points Confidence Contours
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> Grayscale denotes number of experiments thrown in relation to FC (2000)

» Algorithm does a good job of finding the FC contour edge!
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Results

sin? B3

"Real” data similar to latest best-fit estimate from NOvVA. (sin?6; = 0.56,
Am3, =2.44 x 103eV?, cp = 1.57)

sin®0a3 — 6¢cp 68% and 90% CI for NH after 5 iterations
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Results

» 200 different runs for "real” data at the same point as before.

» Use classification accuracy of all grid points, taking FC result as truth, to evaluate performance.

> Progress shows the search algorithm converges to the FC value ~ 10x faster for 2D case and
~ 5x for 1D case

Accuracy
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> Median Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)
» Mean Accuracies for 1D is 98.5% (99.8%) for NH (IH), for 2D is > 99% (both NH, IH)
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Summary and Conclusions

» Neutrino oscillation experiments provide interesting test case for estimating frequentist confidence
intervals

» LBL experiments typically proceed via Feldman-Cousins

» However, simulating Ax? distributions across multi-dimensional parameter space requires huge
computational resources

» We've studied a Bayesian approach using Gaussian processes on a toy LBL set-up

> Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the
entire parameter space!

» Order of magnitude gain in computation!
» See PRD publication for more details : Phys.Rev.D 101 (2020) 1, 012001

> All code with illustrative notebooks here : https://github.com/nitish-nayak/ToyNuOscCI,
maintained by Lingge (linggeli7@gmail.com) and myself (nayakb®uci.edu)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.012001
https://github.com/nitish-nayak/ToyNuOscCI

Backup
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Toy Experiment

> Modelled on NOvVA. Baseline, L = 810km with v, flux peaking at 2GeV
> v, — Ve by multiplying toy shapes for flux, cross-section and oscillation probability.

» 10% normalisation errors on flux and xsec model

v, Flux Oscillation Probability v, Interaction Cross-Section Prediction

Events
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> P(v, — ve) using 3-flavor PMNS with MSW corrections added for matter propagation.
> Similar setup for v, — v, to constrain sin®(2623) and |Am3,| but with 2-flavor approximation
> P(v, — vy) ~ 1 — sin®(203)sin*(Am3,L/4E)
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GPs for FC

» Fitting a GP to target p-value surface for a given contour. (Stochasticity of the target surface)

» "Observation” at a given point in parameter space, § means simulating the LRT distribution and
finding the p-value of crit(0)

» Choose a RBF Kernel with an additional term incorporating variance of p-value estimate at 6.

Monte Carlo Uncertainty
0.04

> k(-,-) = keer (") + o3l

» The additional variance encodes the binomial error
resulting from throwing finite number of
experiments to simulate the LRT distribution at 0

0.03

p-value Error
5
!

0.01 1 > Allows us to incorporate varying number of
experiments thrown into the Cl search, reducing
0.00 = computational burden further.

0 2000 4000 6000 8000 10000
Number of Experiments

NPML 2020 17 / 28 Lingge Li, Nitish Nayak, Jianming Bian, Pierre Baldi



Results

Percentile

"Real” data similar to latest best-fit estimate from NOvVA. (sin*0; = 0.56,

Am3, = 2.44 x 1073eV?, §cp = 1.57)

Significance of rejecting dcp only after 5 iterations. (p-value converted to Z-score significance)

Gaussian Process Given Sampled Points

1.0 1 — GP
————————————————— Truth
@ Sampled Points
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GP Technical Details

» Rasmussen and Williams has a good discussion about convergence to true functions in regression
settings (typically using squared loss functions) :
http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

> Well behaved = expressible as a generalised fourier series of kernel eigenfunctions
» If kernel is non-degenerate, approximation is guaranteed to converge to true function
> If degenerate, convergence towards an L, approximation of the true function

» Rates of convergence typically depends on mean and kernel smoothness as well as smoothness of
the true function
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http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

GP Fitting

> Hyperparameters (w) learned via maximising log marginal likelihood :

p(y|X, w) = / p(y/X, w, F)p(fIX, w)df

v

Clearly,
fIX, w ~ N(0, K(X,w))

v

Some algebra gives us :
—2log p(y|X,w) =y K 'y + log |K| + nlog 2m

» Minimising above equation gives us a good choice for w

v

log|K| acts as a penalty term for complexity and therefore reduces overfitting to data
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GP for

FC

" Gaussian” not a statement of the underlying distribution of the test statistic, which can still be
heavily non-Gaussian

Rather, " Gaussianity” for a stochastic process generating the test statistic distributions.
Stochasticity mostly from finite FC grid resolution or finite number of MC experiments for
simulating the test statistic distribution

Assumption we're making for this stochasticity is that it can be parameterised by a kernel
describing the relationship between the distributions at neighbouring points =—> multi-variate
gaussian

Also important to note, no real statement about FC coverage or handling of nuisance parameters.
Assumes FC gives desired level of coverage

Confidence Intervals still with frequentist interpretation

Bayesian interpretation for " classification probability” of points in parameter space for desired
confidence regions

A good summary would be " Accelerating Frequentist Cl search by estimating Cl edges through
Bayesian ML"
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GPs in Literature

> GPs in HEP : arXiv:1709.05681, M. Frate, K. Cranmer et al. Using GPs to describe background
spectra in dijet resonance searches at the LHC non-parametrically.

» Used in Astrophysics for modelling stochasticity of light yields in stars, active galactic nuclei etc
> Many other fields!
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Pseudo-code

Algorithm 1 GP iterative confidence contour finding

for each iteration t =1,2,... do
Propose new points in parameter space arg max, a(6)
for each point ¢’ do
Simulate likelihood ratio distribution
for k=1,2,... do
Perform a pseudo experiment
Maximize the likelihood with respect to (0, d)
Maximize the likelihood with constraint § = ¢’
end for
Obtain critical value c(6")
end for
Update GP approximation &(6)
Update confidence contours
end for
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Results : NH, sin®023 — d¢cp

Number of Points Explored
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NH, 5in2923 - 5CP

Target Surface
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NH, 5in2923 - 5CP

Contours by Area Quartile
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NH, sin?0,3 — Am3,

Target Surface
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NH, sin?0,3 — Am3,

Sampled Points
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NH, sin?0,3 — Am3,
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Accuracy
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