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1. Input data

Simula on of generic par cle interac ons in liquid argon (LAr):

7683 voxels images (∼ 12m3 of LAr, 3 × 3 × 3mm3 voxels)
One `par cle bomb' per image (tracks + showers from common vertex)

Cosmic muons + random showers overlayed

Only EM shower voxels are part of this study. See poster ID 373 to find

out how classifica on is done using a the so-called U-ResNet architecture.
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2. Fragment clustering

Dense fragments clustered using DBSCAN

Distance scale ε = 1.999, min points: 1

Fragment purity, P , defined as frac on of

fragment that belongs to one shower group

Over 99.9 % of fragments have P = 1
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Fragments selected to have > 10 voxels
Ensures fragments have direc on

Simplifies clustering task

Introduces an uncertainty on shower energy

Frac on deposited in small fragments varies
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3. Feature extraction

Fragment i encoded in geometric features, xi:

Centroid, p̄

Covariance matrix and its eigenvalues, w

Size in number of voxels

Start point, f , start direc on es mate, d̂

Start point optained using the Point Proposal

Network described in poster ID 319

Build complete undirected graph which con-

nects all fragments with all other fragments

Graph edge (i, j) provided with features, eij

Closest points of approach, pi, pj

Displacement vector, v = pj − pi

Outer product and norm of v
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4. Message passing

Message passing used to communicate in a graph (arXiv:1806:01261)

At each EdgeLayer, the edge features of edge (i, j) are updated through:

es+1
ij = ψΘ(xsi , xsj, esij)

Messages are then built to carry informa on from fragment j to i:

ms+1
ji = φΘ(xsj, es+1

ji )

Messages received by fragment i are aggregated to update its features

xs+1
i = χΘ(xi, �N (i)m

s+1
ji )

Func ons ψΘ, φΘ, χΘ and � are arbitrary. In this study:

ψΘ, φΘ and χΘ are learnable 3-layer perceptrons outpu ng 64 features

� takes the mean of the incoming messages

Message passing is performed thrice

5. Shower grouping

Edge scores
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GNN infers adjacency score, seij , for each edge (i, j)
Op mize fragment par on, g, to minimize CE loss:

L = 1
Ne

∑
(i,j)∈E δgi,gj ln(seij) + (1 − δgi,gj) ln(1 − seij)

Clustering metrics:

Purity= 1 if predicted groups do not mix labels

Efficiency= 1 if true groups are not split

ARI stringent measure of par on similarity
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6. Primary identification

GNN infers a primary score, s
p
i , for each fragment i, correlated to the likehood

of a fragment to have ini ated a shower

For true primaries, s
p
i > 0.5 in 98.83% of events

For true secondaries, s
p
i < 0.5 in 99.86% of events

Primary iden fica on improved

by using grouping informa on

Given inferred shower groups,

select fragmentwith highest pri-

mary score in each group

Yields 99.77% accuracy

Without prior knowledge of

fragment start points, algorithm

maintains 99.00% accuracy
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7. Neutral pion reconstruction

Shower grouping used to reconstruct shower

energy by summing voxel energies in group

∼ 5% energy resolu on for E > 500MeV

Uncertainty driven by fragment selec on
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Shower direc on es mated by taking mean

primary direc on w.r.t. to start point

∼ 2◦ angular resolu on for E > 500MeV
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Neutral pions typically immediatly decay to

two gamma rays whose kinema cs verify

mπ0 =
√

2E1E2(1 − d̂1 · d̂2),
with E1, E2 the reconstructed energies and

d̂1, d̂2 the es mated direc ons of the showers

Impact of the shower energy and angular res-

olu on on π0 mass resolu on is studied:

π0 selec on done using truth informa on

Mass resolu on: 136.1 ± 20.4MeV/c2

Angle can improve by iden fying vertex
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https://indico.fnal.gov/event/19348/contributions/186288/
https://indico.fnal.gov/event/19348/contributions/186177/
https://arxiv.org/abs/1806.01261

