Shower Reconstruction in Liquid Argon Time Projection Chambers using Graph Neural Networks

Pierre Cote de Soux¹, François Drielsma ${ }^{2 \dagger}$, Qing Lin², Kazuhiro Terao², on behalf of the DeepLearnPhysics Collaboration

(0) Eneror

Office of SLAC

1. Input data

Simulation of generic particle interactions in liquid argon (LAr)

- 768^{3} voxels images ($\sim 12 \mathrm{~m}^{3}$ of LAr, $3 \times 3 \times 3 \mathrm{~mm}^{3}$ voxels)
- One 'particle bomb' per image (tracks + showers from common vertex) - Cosmic muons + random showers overlayed

Only EM shower voxels are part of this study. See poster ID 373 to find out how classification is done using a the so-called U-ResNet architecture.

3. Feature extraction

Fragment i encoded in geometric features, \boldsymbol{x}_{i} : - Centroid, $\overline{\boldsymbol{p}}$

- Covariance matrix and its eigenvalues, \boldsymbol{w}
- Size in number of voxels
- Start point, \boldsymbol{f}, start direction estimate, $\hat{\boldsymbol{d}}$ Start point optained using the Point Proposal Start point optained using the Point
Network described in poster ID 319
Build complete undirected graph which connects all fragments with all other fragments
Graph edge (i, j) provided with features, $\boldsymbol{e}_{i j}$
- Closest points of approach, $\boldsymbol{p}_{i}, \boldsymbol{p}_{j}$
- Displacement vector, $\boldsymbol{v}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i}$
- Outer product and norm of \boldsymbol{v}

5. Shower grouping

GNN infers adjacency score, $s_{i j}^{e}$, for each edge (i, j) Optimize fragment partition, \boldsymbol{g}, to minimize CE loss $L=\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}^{e}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}^{e}\right)$ Clustering metrics:

- Purity $=1$ if predicted groups do not mix labels
- Efficiency $=1$ if true groups are not split
- ARI stringent measure of partition similarity

4. Message passing

Message passing used to communicate in a graph (arXiv:1806:01261) At each EdgeLayer, the edge features of edge (i, j) are updated through:

$$
e_{i j}^{s+1}=\psi_{\boldsymbol{\Theta}}\left(\boldsymbol{x}_{i}^{s}, \boldsymbol{x}_{j}^{s}, e_{i j}^{s}\right)
$$

Messages are then built to carry information from fragment j to i

$$
\boldsymbol{m}_{j i}^{s+1}=\phi_{\boldsymbol{\Theta}}\left(\boldsymbol{x}_{j}^{s}, e_{j i}^{s+1}\right)
$$

Messages received by fragment i are aggregated to update its features $\boldsymbol{x}_{i}^{s+1}=\chi_{\boldsymbol{\Theta}}\left(\boldsymbol{x}_{i}, \square_{\mathcal{N}(i)} \boldsymbol{m}_{j i}^{s+1}\right)$
Functions $\psi_{\boldsymbol{\Theta}}, \phi_{\boldsymbol{\Theta}}, \chi_{\Theta}$ and \square are arbitrary. In this study:

- $\psi_{\boldsymbol{\Theta}}, \phi_{\boldsymbol{\Theta}}$ and $\chi_{\boldsymbol{\Theta}}$ are learnable 3-layer perceptrons outputting 64 features
- \square takes the mean of the incoming messages
- Message passing is performed thrice

6. Primary identification

GNN infers a primary score, s_{i}^{p}, for each fragment i, correlated to the likehood of a fragment to have initiated a shower

- For true primaries, $s_{i}^{p}>0.5$ in 98.83% of events
- For true secondaries, $s_{i}^{p}<0.5$ in 99.86% of events

Primary identification improved by using grouping information Given inferred shower groups, select fragment with highest pri mary score in each group

- Yields 99.77% accuracy

Without prior knowledge of fragment start points, algorit
maintains 99.00% accuracy

7. Neutral pion reconstruction

Shower grouping used to reconstruct shower energy by summing voxel energies in group - ~ $\sim 5 \%$ energy resolution for $E>500 \mathrm{MeV}$ - Uncertainty driven by fragment selection

Shower direction estimated by taking mean Srimary direction wrt to start point - $\sim 2^{\circ}$ angular resolution for $E>500 \mathrm{MeV}$

Neutral pions typically immediatly decay to two gamma rays whose kinematics verify

$$
m_{\pi^{0}}=\sqrt{2 E_{1} E_{2}\left(1-\hat{\boldsymbol{d}_{1}} \cdot \hat{\boldsymbol{d}_{2}}\right)},
$$ with E_{1}, E_{2} the reconstructed energies and \hat{d}_{1}, \hat{d}_{2} the estimated directions of the showers mpact of the shower energy and angular res olution on π^{0} mass resolution is studied:

- π^{0} selection done using truth information Mass resolution: $136.1+20.4 \mathrm{MeV} / \mathrm{c}^{2}$ - Angle can improve by identifying vertex

