Shower Reconstruction in Liquid Argon Time Projection Chambers using Graph Neural Networks

Pierre Cote de Soux¹, **François Drielsma**^{2†}, Qing Lin², Kazuhiro Terao², on behalf of the DeepLearnPhysics Collaboration

¹ICME, Stanford Univeristy, ²SLAC National Accelerator Laboratory, [†]drielsma@slac.stanford.edu

1. Input data

Simulation of generic particle interactions in liquid argon (LAr):

- 768³ voxels images (~ 12 m³ of LAr, $3 \times 3 \times 3$ mm³ voxels)
- One `particle bomb' per image (tracks + showers from common vertex)
- Cosmic muons + random showers overlayed

Only EM shower voxels are part of this study. See poster ID 373 to find out how classification is done using a the so-called U-ResNet architecture.

2. Fragment clustering

Dense fragments clustered using DBSCAN

• Distance scale $\epsilon = 1.999$, min points: 1

Fragment purity, \mathcal{P} , defined as fraction of fragment that belongs to one shower group

• Over 99.9% of fragments have $\mathcal{P}=1$

- **F**ragments selected to have > 10 voxels
- Ensures fragments have direction
- Simplifies clustering task
- Introduces an uncertainty on shower energy
- Fraction deposited in small fragments varies

3. Feature extraction

Fragment *i* encoded in geometric features, x_i :

- Centroid, \bar{p}
- Covariance matrix and its eigenvalues, $oldsymbol{w}$
- Size in number of voxels
- Start point, $m{f}$, start direction estimate, $\hat{m{d}}$

Start point optained using the Point Proposal Network described in poster ID 319

Build complete undirected graph which connects all fragments with all other fragments

Graph edge (i, j) provided with features, e_{ij}

- Closest points of approach, $oldsymbol{p}_i,\,oldsymbol{p}_i$
- Displacement vector, $oldsymbol{v} = oldsymbol{p}_j oldsymbol{p}_i$
- Outer product and norm of $oldsymbol{v}$

4. Message passing

Message passing used to communicate in a graph (arXiv:1806:01261) At each EdgeLayer, the edge features of edge (i, j) are updated through: $e^{s+1}_{i\,i} = \psi_{m \Theta}({m x}^s_i,\,{m x}^s_j,\,{m e}^s_{ij})$

Messages are then built to carry information from fragment j to i: $m{m}_{ji}^{s+1} = \phi_{m{\Theta}}(m{x}_{j}^{s}, \, m{e}_{ji}^{s+1})$

Messages received by fragment i are aggregated to update its features $\boldsymbol{x}_{i}^{s+1} = \chi_{\boldsymbol{\Theta}}(\boldsymbol{x}_{i}, \, \Box_{\mathcal{N}(i)} \boldsymbol{m}_{ji}^{s+1})$

Functions ψ_{Θ} , ϕ_{Θ} , χ_{Θ} and \Box are arbitrary. In this study:

- ψ_{Θ} , ϕ_{Θ} and χ_{Θ} are learnable 3-layer perceptrons outputting 64 features
- \Box takes the mean of the incoming messages
- Message passing is performed thrice

Second edge

5. Shower grouping

GNN infers adjacency score, s_{ij}^e , for each edge (i, j)**O**ptimize fragment partition, \boldsymbol{g} , to minimize CE loss: $L = \frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}^e) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij}^e)$ **C**lustering metrics:

• Purity = 1 if predicted groups do not mix labels • Efficiency = 1 if true groups are not split ARI stringent measure of partition similarity

6. Primary identification

GNN infers a primary score, s_i^p , for each fragment *i*, correlated to the likehood of a fragment to have initiated a shower

- For true primaries, $s_i^p > 0.5$ in 98.83% of events
- For true secondaries, $s_i^p < 0.5$ in 99.86% of events

Primary identification improved by using grouping information

Given inferred shower groups, select fragment with highest primary score in each group

Yields 99.77 % accuracy

Without prior knowledge of fragment start points, algorithm maintains 99.00% accuracy

7. Neutral pion reconstruction

Shower grouping used to reconstruct shower energy by summing voxel energies in group

- ~ 5 % energy resolution for $E > 500 \,\mathrm{MeV}$
- Uncertainty driven by fragment selection

Shower direction estimated by taking mean primary direction w.r.t. to start point

Neutral pions typically immediatly decay to two gamma rays whose kinematics verify

$$m_{\pi^0} = \sqrt{2E_1E_2(1-\hat{\boldsymbol{d}}_1\cdot\hat{\boldsymbol{d}}_2)},$$

with E_1 , E_2 the reconstructed energies and \hat{d}_1, \hat{d}_2 the estimated directions of the showers

Impact of the shower energy and angular resolution on π^0 mass resolution is studied:

- π^0 selection done using truth information
- Mass resolution: $136.1 \pm 20.4 \text{ MeV}/c^2$
- Angle can improve by identifying vertex

Optimized partition