Interaction clustering in Liquid Argon Time Projection Chamber using Graph Neural Network

Qing Lin on behalf of DeepLearnPhysics collaboration June 19th

Recap on Recon. Framework (Simplified)

Input:

3D image with depth of

1 (energy dep. or

charge)

Point Proposal

Step 2: Cluster fragments into particle groups

Step 1.5:

arXiv: 1903.05663 doi.org/10.5281/zenodo.1300713 Dense clustering

Step 3: Cluster particle groups into interaction groups (this presentation)

Interaction clustering

- Graphic representations of particle groups.
- Node presents each particle group, and edge (connection between two nodes) represents two particle correlation.

- Use Graph Neural Network (GNN) available on market for predicting the edge on/off.
- Currently used GNN is kernel-based convolution operator (torch.geometric.nn.NNConv).
- Based on edge prediction, the interaction clustering can be interpreted.

Node & Edge Features (baseline model)

Basic node features (28):

- (1) Size (number of voxels)
- (9) Covariance matrix
- (3) Principle axis
- (3) Particle group centroid
- (2) Energy dep. mean & std
- (1) Largest-fraction semantic type of particle group
- (6) Start & end point
- (3) Direction

Basic edge features (19):

- (3) Closest point in particle 1
- (3) Closest point in particle 2
- (3) Displacement of two closest points
- (1) Length of displacement
- (9) Outer product of displacement

Training

- Image size: 768 px (~2.3 m) on each dimension
- 125k training samples and 22k test samples.
- Sample contain nu-like and cosmic-like
- Cosmic-like includes track and gamma showers
- Angular distributions of "nu daughters" and "cosmics" are isotropical.
- Number of nu-like follows Poissonian with mean of 2

SLAC

Performance:

Nv	ARI	PUR	EFF
1	0.986	0.996	0.997
2	0.987	0.996	0.994
4	0.980	0.996	0.989

- ARI (adjusted rand index) is used for measuring goodness of clustering.
- Purity and efficiency for checking over- and under-clustering

SL

SLAC

- Baseline model of particle clustering in recon. chain is more or less finished. Input with human-supervised features, GNN is able to achieve ARI of >0.98 @ 4-nu per image
- We are also exploring ways to improve performance of particle clustering, such as feeding CNN encoder extracted features into GNN.

ML for LArTPCs

At SLAC, research supported by DoE ML grants (K. Terao):

- Deep-learning-based data reconstruction chain for liquid argon time-projection chambers
- μ BOONE, pDUNE, ICARUS, ArgonCube 2x2, DUNE

DUNE

SLAC Group

L. Domine ICARUS

P. Cotes de Soux

F. Drielsma ICARUS

s

