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LEARN I N G FRU M D ATA Lectrure of Prof. Yaser Abu Mostafa, Caltech

Machine Learning is the field of study that gives
computers the ability to learn without being explicitly
programmed.

Second Phase: Speak the language of data

Third Phase: Let the data speak for itself

Arthur Samuel



LEARNING PHYSICS FROM DATA
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LEARNING PHYSICS FROM DATA
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[ Modification of MC simulation with Pressure Parameter ]
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LEARNING PHYSICS FROM DATA

Better Detector

( Signal(Ov(33) vs Background(19C) Pressure Map ) ( Origin of Classification Power )
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SPEAK THE LANGUAGE OF DATA

» When opening up spherical image onto 2D 6-¢ grid, image

get distorted near the north/south pole.

Normal CNN network cannot learn this distortion
properly, because it does not incorporate the appropriate

symmetry of spherical coordinate system.

( LATISEb )

BExtracted Feature

To speak the language of spherical input, we

iIntroduce Spherical CNN(Cohen et al.) to our
network.

Image




SPEAK THE LANGUAGE OF DATA

( Spherical CNN Pressure Map )
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» Spherical CNN undergoes a

much smoother transition
from low to high pressure
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» Overall 2.40 performance
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» 16% improvement for current
KamLAND detector hardware
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Event/0.05MeV

Mostly 2v[3[3
events( like)

Mostly <08T1 decay
events(3+y)
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SPEAK THE LANGUAGE OF DATA
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LET THE DATA SPEAK FOR ITSELF

» Traditional approach: training with MC,
validate with data

» What if input data is NOT within the
training MC sample?

» Hlectronic noise events

» In that we, we need to let the data
“speak” for itself

» Validate on MNIST dataset:

» Trained on #1, 4, 8

» PDF is obtained for each training
class

» Validate on #1, 4, 8, outlier #6

» (Qutlier #6 is correctly isolated



THANK YOU FOR YOUR ATTENTION!

> Learning physics from data:

» Normal CNN can efficiently classify backgrounds
that are previously considered indistinguishable

The last mile of OVBP is rough

» B60% 10C rejection while keeping 90% of Ov[3[3 and steep,
signal but it is a physicist's instinct
to pursue the summit.
» The major classification power comes from the .
timing profile of events. Eﬁi@e from theend of this

> Speak the language of data: there lies a great view ahead.

» Incorporating correct symmetry into the
machine can significantly boost its result

» 16% increase with current KamIL AND-Zen
hardware Last paragraph of my thesis

> Let the data speak for itself:

» Achieve joint training with MC and data, with the
proper handling of outlier events.




