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Problem

Axial and Vector Form Factors (FF) of the nucleon:

» quasielastic charged current and elastic neutral current /N and v-nucleus
scattering cross-sections parameterized by vector and axial nucleon form
factors.

» information about electroweak structure of the nucleon hidden in F'F

» empirical information from:
- elastic electron scattering data
- quesielastic v scattering data

» nucleon form factors: real-valued functions (scalars) depending on Q?

Task
> obtain the Gg) (electric), G, magnetic protons FF
> obtain F4 axial FF
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Neural Networks and Bayesian Statistics

Problems

» the choice of FF parametrization affects the results of the analysis:
prediction of the uncertainties etc.

» bias-variance trade-off: too simple models under-fit the data, too
complex models tend to over-fit the data

Method: Bayesian Neural Networks (BNN):

» Bayesian approach naturally embodies Occam’s razor: penalizes too
complex models and favor simpler approaches hence good
generalization abilities

» Form Factors parametrized by Feed Forward Neural Networks in Multi
Layer Perceptron (MLP) configuration

» Bayesian framework for Neural Networks: following MacKay's
— Estimate of the uncertainties of the model predictions

— validation data set is not required
—

Quantitative comparison of different models
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Bayesian model

i) Consider data D and Neural Network, A ({w;})
ii) two conditional probabilities: prior and likelihood

iii) from Bayes theorem Posterior

likelihood prior
P(D{w;},N) P({w; }|N)
P({wi}p, ) - DEHeL A L
e o)
posterior Hd/_/

» Evidence for model N/

P(DIN)PN)

PID) = ==Frs

so evidence ranks models
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» likelihood
—2InP(D{w:}),N) ~ Xx2:(D, N, {w:}) (3)

» prior
w
@
P{wi}|la,N) ~ exp (—§Ew> , Bw= Zwi (4)
k=1

« regularizer (hyperparameter)

» posterior
—2In P({w;}|D, N, @) ~ (x2x (D, {wi}) + aEw) = E(D, {wi}), (5)
E(D,{w;}) has a minimum at {w;}mp and amp
» a)sp established during the training

» 1 step of inference: the posterior is maximized

» 2 step of inference: the evidence for each model is calculated to choose
the best model!
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Computation Scheme

Take network of given
scheme

Intalize network wexghts set
smallvalue fora

Performe the Iearnlng trial: > C++ |ibrary developed by

\teratmgon line o parameter Repeat K M - Graczyk and C Juszczak

cycle

Compute the evidence for . o

m » user defined error function
gavethenetwork » symbolic derivatives (but also
“’”f'g”'a""" numerical derivatives available)

» several optimization
Ch?;:;razl::'cvewth » Change the netowrk scherme algorithms: gradient descent,
QuickProp, RPROP (in several
Q configurations, Adam,
Levenberg-Marquardt (with
Choose the best network approximate and exact
Hessian)

P every iteration step a's are changed
(Hessian matrix is calculated and its
eigenvalues)
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Electric and Magnetic Form Factors of the Proton:
Graczyk and Juszczak, PRC90, 054334 (2014)
» 27 elastic ep scattering cross

section data sets (27 normalization
parameters in the fit)

» 15 polarization transfer data sets
(ratios upGEp/Gurip)
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Axial Form Factor
Alvarez-Ruso, Graczyk and Saul-Sala, PRC99 (2019), 025204

» ANL Bubble Chamber Data: v, +d — p~ + p + p (PRD26, 537):
distribution of events: Q? € (0.05,2.5) GeV?

» The least square-function:

X2z = XANL + X4 (8)
where "
oy iL (N; — pNi*) Vel 2 ©)
XANL = - N, . %

Ap — systematic uncertainty for #N of events
do

& (EU7FA) mazx
= 6@2— ﬂ L do
N; —/O dE, o(E,,Fa) dE,)’ U(EV,FA)f/mm dQ2(E”’FA)dQ
(10)
> Fa(Q*=0),
2 S FA(O)—gA 2
= (25) a

ga and Aga from PDG
» Cross section modified by nuclear corrections for deuterium.
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90

Analysis S
(i) BINO: all ANL bins included
(ii) BINk: where k =1 or k = 2:

ANL bins without the first & e

bins

Fa(Q2)=FEEF (@24 Naa( Q% favs ) s :
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For BINO The slope of F4 at
Q? = 0 not consistent with
other determinations...

fits of BIN1 and BIN2 data
consistent with original ANL
analysis

deuteron correction important
for the first bin
Possible explanation:

» a low quality of the
measurements at low-Q?
due to low and not well
understood efficiency

» an improper description of
the nuclear corrections

> the actual value of the slope
dFA(Q?% = 0)/dQ? might
not be properly estimated
because of the lack of very
low-Q? data



two competitive scenarios: on the edge of dipole...

14 T U7 T K T
scenario A: max of evidence
g scenario B: the 2nd model indicated by evidence
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» small effects are important

v

there is a tension between the first bin and constraint for F4 at Q> =0

> assumption: dFa(Q% = 0)/dQ* < 0 — the fit in agreement with dipole
shape...
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Final Remarks

» First Bayesian analyses of the electron-proton and neutrino-deuteron
scattering data presented.

The method allows to:
analyze small data sets
reduce the model dependence of final results

compare quantitatively different models

*»V VvV Yy

Calculations done in WrocAtaw Centre for Networking and
Supercomputing, Grant No. 268 (http://www.wcss.wroc.pl)

NPML:Lighting Talks K.M.Graczyk 12/12


http://www.wcss.wroc.pl

