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Overview
This talk will:


1. Review the traditional shower energy reconstruction 
method in MicroBooNE


2. Motivate the use of a convolutional neural network (CNN)


3. Describe the current structure of the shower energy CNN


4. Compare the CNN and the clustering algorithm


5. Explore avenues of improvement for the CNN
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The MicroBooNE Detector
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Acciarri et. al., JINST 12, P02017 (2017)

• Charged particles passing through 
MicroBooNE create ionization 
electrons, which are drifted 
through an electric field to three 
wire planes


• Electrons and photons will create 
electromagnetic showers in the 
detector, which 


    appear as 

    “clusters” of 

    charge in the wire

    plane images
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Traditional Clustering Algorithm
1. Take a given reconstructed Y-plane vertex and center a 512x512 pixel box 

around that vertex


2. Remove pixels with an ADC value < 10 and a shower score < 0.05 (from the 
“sparse semantic segmentation” network)


3. From the vertex, find the optimal direction, length, and opening angle of a cone 
in order to capture the maximum number of shower pixels


4. Fit for calibration parameters between the total charge in the cone and true 
energy of the electron
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MicroBooNE In Progress
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Failure Modes
• Due to the nature of a linear calibration, the cluster algorithm loses 

efficiency for electrons that deposit a below-average fraction of their 
energy into shower charge


• This happens most frequently for showers that pass through non-
responsive wire regions


• A convolutional neural network may be able to account for the lost charge 
in these situations, especially if it knows which wires are non-responsive
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Network Overview

Shower

Wire 
Status

512x512

512x512x6 input

24-Layer Residual 
Network

Continuous variable output 
(electron energy prediction)

Showers are isolated using a 
semantic segmentation network 

designed to predict shower pixels

1/0 indicate wire status
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Currently trained using stochastic 
gradient descent on the L1 loss 
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Unmasked Image U Unmasked Image V Unmasked Image Y

Actual Network Input

Before Shower Masking
Simulation

MicroBooNE In Progress
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Network Training
• Training/validation sample consists of roughly:


A. 57000/14000 shower images from the standard MicroBooNE 
simulation sample of electrons from      interactions  


B. 5700/1400 shower images from a low energy version of the 
same sample


• Cuts: 


1. Take only the reconstructed vertex closest to the true 
electron vertex in each event


2. Require the reconstructed vertex to be in fiducial volume


3. Require
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Network Performance
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MicroBooNE In Progress
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CNN v.s. Cluster Algorithm
• The performance of the CNN can be compared to that of 

the clustering algorithm on the same set of shower 
images


• The plots in the following slides use the validation sample 
of the network


• Comparisons are divided between the standard and low 
energy shower image samples


• It is found that the clustering algorithm outperforms the 
CNN for                 MeV, while the CNN outperforms the 
clustering algorithm for                 MeV                 
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Etrue ≲ 250
Etrue ≳ 250
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MicroBooNE In Progress MicroBooNE In Progress

MicroBooNE In Progress MicroBooNE In Progress
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Validation Sample (Standard Only)
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MicroBooNE In Progress
MicroBooNE In Progress

Ereco − Etrue

Etrue

• Closely resembles full validation sample (makes sense; comprises 
majority of it)


• ~500 MeV bump still present in CNN predicted energy spectrum, 
cannot be attributed to low energy sample
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Validation Sample (Low Energy Only)
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MicroBooNE In Progress
MicroBooNE In Progress

Ereco − Etrue

Etrue

• Cluster algorithm fractional error appears more sharply peaked here


• CNN has a longer tail extending to higher fractional errors / 
predicted energies—it is generally over predicting these showers
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Near Future Next Steps
• Refine the training sample to improve performance at low 

energies (including increasing the weight of low energy 
training images)


• Reconstruct the energy of gammas from pi0 data events 
to obtain a mass peak


• Compare performance of different model architectures


• Evaluate detector-related systematic uncertainties of the 
network
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Conclusion
• A CNN-based shower energy reconstruction method has 

been developed to address the failure modes of the 
traditional clustering algorithm


• The CNN currently outperforms the clustering algorithm at 
high energies, but tends to over-predict low energy 
showers


• Near-future work will focus on solving this over-prediction 
issue and validating the network performance on data
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Backups

!17



Nick Kamp NPML 2020

2D Clustering Y-plane Images
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Simulation MicroBooNE In Progress
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Network Performance
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Network Performance
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