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I ICARUS

% Large-scale (760-ton) LArTPC detector

currently at Fermilab (e5. stopping muon)
Cathode 2D wire planes images (x3)
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¢ Wire LArTPC => 2D images

% cluster3dalgorithm from T. Usher
reconstructs 3D points from 20 wire
images
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Wires readout

% Following slides use a dataset made
with ICARUS detector simulation.




I Reconstructing 3D points

Problem: clusterdd yields a lot of
false positives = “ghost points’

First step is to remove ghosts!

How do ghost points arise?
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Output of cluster3d = Network input
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I Reconstructing 3D points Pedicted no-ghost vorels
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Sparse UResNet predicts binary semantic
segmentation (ghost vs. non-ghost).
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See arxiv:1903.05663

for details on the architecture & sparse convolutions



https://arxiv.org/abs/1903.05663

I Reconstructing 3D points Pedicted no-ghost vorels
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Remaining mistakes are “reasonable”.
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predicted as non-ghost mistakenly predicted as ghost




I Particle type

True label

b-classes semantic segmentation on predicted
non-ghost voxels
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Predicted label
Confusion matrix (rows sum up to 1)
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Predicted particle type for each voxel
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| ook at the 3D event display online!



http://stanford.edu/~ldomine/Nu2020Poster.html

Finding Michel electrons

% Density-based clustering (DBSCAN) on
predicted Michel & Track voxels

Primary ionization of
Michel electron

Select Michel clusters attached at the
edge of a Track cluster = candidate
Michel clusters

Match candidate Michel clusters with
true Michel clusters using maximal voxel Muon
overlap count decaying




I Finding Michel electrons
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I Finding Michel electrons

How many voxels in a How many voxels in a : =
matched candidate Michel matched true Michel cluster § 1500 [ Clustering efficiency
cluster overlap with true? overlap with the candidate? i | Clustering purity

5 1250
G
© 1000
2
o 750
=
$ 500
G
© 250
o) o) =
88% 9N% 0
0.0
Clustering Clustering

efficiency purity




I Finding Miche

Michel electrons clusters

electrons
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I Next steps

¢ Demonstrates a simple way to reconstruct Michel electrons
in ICARUS using Deep Learning with high efficiency/purity
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First physics output of our ML-based LArTPC data
reconstruction chain without using any truth information!

¢ Future work includes: clustering radiative photons, using
predicted points of interest, analyzing mistakes...




