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Liquid Ar Scintillators
• Bright scintillator (40 photons/keVee) 

• Well-known nuclear quenching factor

• Emission timescales: 
• 6 ns (singlet) 
• 1.6 μs (triplet)

• Electron recoils (ER) and nuclear recoils (NR) yield 
different ratio in exited state populations -> Pulse 
Shape Discrimination (PSD)

• Scintillation light wavelength: 128 nm (requires 
wavelength shifting)

• Benefit of using liquid noble gas – Scalability

• LAr detectors used for neutrino beams, dark matter, 
coherent elastic neutrino-nucleus scattering (CEvNS).
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Nuclear Recoil

e- / γ



Coherent Elastic Neutrino-Nucleus Scattering

• Clean prediction from the Standard Model – D. Freedman 1974

• Cross-section increases with energy as long as coherence condition is 
satisfied ( 𝑞 ≤ ~ 𝑅−1)

• Largest of all SM neutrino cross-sections at 1-100 MeV scale

• NC mediated: all flavors of neutrino can scatter via CEνNS

• Sensitive Standard Model Probe

• Applications: Dark Matter Experiments, Supernovae, Monitoring
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Cross section may be high, but the signal is 
in the form of a low-energy nuclear recoil!



COHERENT at the SNS

• Spallation Neutron Source (SNS):
• 1.4 MW pulsed 1 GeV proton beam on Hg target
• Pulsed at 60 Hz with 400 ns FWHM
• Pion decay-at-rest (DAR) neutrino source.

• Detectors located between 20-30 m from target in neutron 
quiet basement corridor (Neutrino Alley).

• Multiple detectors currently operating measuring either 
CEνNS or backgrounds.
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Subject of 
This Talk!

Staged approach: Observation -> Precision



CENNS-10
• Loaned from J. Yoo et al from Fermilab.

• Single-phase liquid Ar scintillation detector located 28 
m from SNS target  (~2 x 107 ν / s )

• Engineering Run: Dec 2016 -> May 2017 
• 80 keVnr threshold
• No Pb shielding
• Analysis Results -> Phys. Rev. D100 (2019) no. 11, 115020

• First Production Run: July 2017 -> December 2018
• Dramatically improved light yield results in lower 

threshold (20 keVnr)
• 2x 8” Hamamatsu PMTs with 18% eff @ 400 nm
• Tetraphenyl butadiene (TPB) wavelength shifter 

coating Teflon walls and PMT glass.
• 24 kg fiducial volume.
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arXiv:2003.10630



Event Discrimination
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• Use of PoT signal from SNS greatly reduces steady-state 
backgrounds, BUT 1 Hz/kg of 39Ar events still a large background:

Singlet 
Light

Triplet Light

Analysis A Fit Results

• Standard PSD technique for Ar scintillation is ratio of integral in first 
90 ns to total integral (F90)

• Potential issues near threshold:
• Discrete photon pulses widen dispersion of band.
• Value of F90 much more susceptible to fluctuations.

• Can we use more (all) waveform information?

AmBe Data

Neutrons

e-/γ



Applying a 2D CNN

• Convolutional neural networks typically work on 2-d images; 
but there is some support for 1d neural network in pyKeras.

• Relative paucity of 1D examples, so first attempt works on 2D 
images of waveforms instead.

• Recurrence plots are often used to visualize periodic features 
in N-dimensional phase spaces.

• Distance is limited to some number of gradations which in the 
following instances is set to 128.

• Due to large size of peak w.r.t. other samples, square root of 
distance was used instead.

𝑅(𝑖, 𝑗) = Ԧ𝑥 𝑖 − Ԧ𝑥 𝑗

Waveform

Recurrence Plot



Creating Waveform Images
NR

ER



Training the Network

• Time-tagged DT data makes for an excellent source of NR 
waveforms with little accidentally contamination form ER band.

• Selection criteria for training samples:

NR
• 20 < NPE < 600
• 0.4 < F90 < 0.81
• -0.6 < Tag Time < 0.1

ER
• 40 < NPE < 600
• 0.15 < F90 < 0.4
• 57Co calibration data

• Approximately 1e5 events for both event samples.



Training the Network
• Event waveforms are truncated to 1024 samples, and then down sampled twice to 

yield an array of 256 samples.

• Recurrence map then generated which has shape (256,256), which is fed to the CNN.



Training the Network

• Few epochs required to train on 
this dataset.

• Can use model output to classify 
new data.

• Classification results are either 
binary class decision (Sig,Bkg)

OR
• Score for each category (0->1) 

where summation of scores equals 
unity.

• Variable used for cuts: Signal Score 
– Bkg Score (-1->1 with > 0 being 
signal classification).



Evaluation on Calibration Data

AmBe Analysis Dataset (Beam OFF) Internally Triggered Bkg

• Sig
• Bkg

Signal Score – Bkg Score > 0.05



Evaluation on Separate DT Dataset

Tagged Data – No Cut Tagged Data – Score > 0.01



Evaluation on Separate DT Dataset

Bkg Classified Sig Classified



Summary and Outlook

15

• Standard PSD methods in LAr scintillation detectors 
begin to degrade with low photo-statistics.

• Signal spectrum for CEvNS (and other NR signals) is 
steeply rising at low energy; harsh F90 cuts eliminate 
potential signal.

• CNN trained using time-tagged DT data is able to 
distinguish events at low energy without strict cut in 
F90-space.

• Results are still preliminary; work to be done to see 
how much this may improve sensitivity of CENNS-10.

• If successful, begin to incorporate ML approaches to 
other COHERENT subsystems.

DT Data CNN Applied



Auxiliary Slides

16



Calibrations
• Calibrations performed using multiple 

gamma sources (57Co, 241Am, 83mKr).

• Observed light yield: 4.6 ± 0.4 p.e./keVee

• 9.5% resolution at 41.5 keVee

• Linearity of detector response over energy 
range of interest.

• Global fit to LAr nuclear quenching data to 
provide keVnr->keVee conversion.

Neutron Calibrations

• AmBe – Used to measure NR response in 
detector and model CEvNS signal.

• DT Generator – Used to confirm veracity 
of external neutron simulations 
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83mKr

241Am

57Co

41.5 keV

83mKr Calibration

NR

e- / γ



Fit Results
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• Best fit for N CEvNS is 159 ± 43 (stat) ± 14 (syst)

• Null hypothesis rejected at 3.9σ (stat only)

• Null hypothesis rejected at 3.5σ (stat+syst)

• Validity of Wilks’ theorem checked with pseudo-data.

• Result within 1-σ of SM prediction.

SM 



CEνNS Cross Section
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• Combine best fit CEvNS counts with flux, 
fid. volume, efficiency uncertainties.

• Obtain flux-averaged cross section:

stat dominated

arXiv:2002.10630; submitted to PRL



Constraints on Non-Std Interactions

20
J. Barranco et al. Phys Rev D 76 (2007)
J. Billard, J. Johnston, B. Kavanagh. arXiv:1805.01798

Modified Cross Section



Fit Projections
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Best Fit 1-D 
Projections

Best Fit 1-D Projections 
with CEνNS = 0



The COHERENT Collaboration
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