Convolutional Neural Networks for Pulse Shape Discrimination in Liquid Argon

Jacob Daughhetee University of Tennessee

> NPML Lightning Talks June 17th, 2020

Liquid Ar Scintillators

- Bright scintillator (40 photons/keVee)
- Well-known nuclear quenching factor
- Emission timescales:
 - 6 ns (singlet)
 - 1.6 µs (triplet)
- Electron recoils (ER) and nuclear recoils (NR) yield different ratio in exited state populations -> Pulse --Shape Discrimination (PSD)
- Scintillation light wavelength: **128 nm** (requires wavelength shifting)
- Benefit of using liquid noble gas Scalability
- LAr detectors used for neutrino beams, dark matter, coherent elastic neutrino-nucleus scattering (CEvNS).

Coherent Elastic Neutrino-Nucleus Scattering

Cross section may be high, but the signal is in the form of a low-energy nuclear recoil!

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 F^2(Q^2)$$

- Clean prediction from the Standard Model D. Freedman 1974
- Cross-section increases with energy as long as coherence condition is satisfied ($q \leq \sim R^{-1}$)
- Largest of all SM neutrino cross-sections at 1-100 MeV scale
- NC mediated: all flavors of neutrino can scatter via CEvNS
- Sensitive Standard Model Probe
- Applications: Dark Matter Experiments, Supernovae, Monitoring

COHERENT at the SNS

Staged approach: *Observation -> Precision*

- Spallation Neutron Source (SNS):
 - **1.4 MW** pulsed 1 GeV proton beam on Hg target
 - Pulsed at 60 Hz with 400 ns FWHM
 - Pion decay-at-rest (DAR) neutrino source.
- Detectors located between 20-30 m from target in neutron quiet basement corridor (Neutrino Alley).
- Multiple detectors currently operating measuring either CEvNS or backgrounds.

CENNS-10

- Loaned from J. Yoo *et al* from Fermilab.
- Single-phase liquid Ar scintillation detector located 28 m from SNS target (~2 x $10^7 v / s$)
- Engineering Run: Dec 2016 -> May 2017
 - 80 keVnr threshold
 - No Pb shielding
 - Analysis Results -> Phys. Rev. D100 (2019) no. 11, 115020
- First Production Run: July 2017 -> December 2018
 - Dramatically improved light yield results in lower threshold (20 keVnr)
 - 2x 8" Hamamatsu PMTs with 18% eff @ 400 nm
 - Tetraphenyl butadiene (TPB) wavelength shifter coating Teflon walls and PMT glass.
 - 24 kg fiducial volume.

Event Discrimination

 Use of PoT signal from SNS greatly reduces steady-state backgrounds, BUT 1 Hz/kg of ³⁹Ar events still a large background:

Data Events	3752
Fit CEvNS	$159 \pm 43 \text{ (stat.)} \pm 14 \text{ (syst.)}$
Fit Beam Related Neutrons	553 ± 34
Fit Beam Unrelated Background	3131 ± 23
Fit Late Beam Related Neutrons	10 ± 11
$2\Delta(-\ln L)$	15.0
Null Rejection Significance	3.5σ (stat. + syst.)

Analysis A Fit Results

- Standard PSD technique for Ar scintillation is ratio of integral in first 90 ns to total integral (F90)
- Potential issues near threshold:
 - Discrete photon pulses widen dispersion of band.
 - Value of F90 much more susceptible to fluctuations.
- Can we use more (all) waveform information?

100

200

300

AmBe Data

400

500

600 PEs

Applying a 2D CNN

- Convolutional neural networks typically work on 2-d images; but there is some support for 1d neural network in pyKeras.
- Relative paucity of 1D examples, so first attempt works on 2D images of waveforms instead.
- Recurrence plots are often used to visualize periodic features in N-dimensional phase spaces.

 $R(i,j) = \|\vec{x}(i) - \vec{x}(j)\|$

- Distance is limited to some number of gradations which in the following instances is set to 128.
- Due to large size of peak w.r.t. other samples, square root of distance was used instead.

Recurrence Plot

Creating Waveform Images

Training the Network

- Time-tagged DT data makes for an excellent source of NR waveforms with little accidentally contamination form ER band.
- Selection criteria for training samples:

NR

- 20 < NPE < 600
- 0.4 < F90 < 0.81
- -0.6 < Tag Time < 0.1

ER

- 40 < NPE < 600
- 0.15 < F90 < 0.4
- ⁵⁷Co calibration data
- Approximately 1e5 events for both event samples.

Training the Network

- Event waveforms are truncated to 1024 samples, and then down sampled twice to yield an array of 256 samples.
- Recurrence map then generated which has shape (256,256), which is fed to the CNN.

```
initializer = initializers.glorot_normal()
model = Sequential()
model.add(Conv2D(64,kernel_size=(3,3),activation='relu',input_shape=(256,256,1)))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(32,kernel_size=(3,3),activation='relu'))
model.add(Flatten())
model.add(Dense(128,activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(2,activation='sigmoid'))
model.compile(loss="sparse_categorical_crossentropy",optimizer='adam',metrics=['accuracy'])
```


Training the Network

- Few epochs required to train on this dataset.
- Can use model output to classify new data.
- Classification results are either binary class decision (Sig,Bkg)
 OR
- Score for each category (0->1) where summation of scores equals unity.
- Variable used for cuts: Signal Score

 Bkg Score (-1->1 with > 0 being signal classification).

Evaluation on Calibration Data

Signal Score – Bkg Score > 0.05

Evaluation on Separate DT Dataset

350

300

Tagged Data – Score > 0.01

Evaluation on Separate DT Dataset

Sig Classified

Summary and Outlook

- Standard PSD methods in LAr scintillation detectors begin to degrade with low photo-statistics.
- Signal spectrum for CEvNS (and other NR signals) is steeply rising at low energy; harsh F90 cuts eliminate potential signal.
- CNN trained using time-tagged DT data is able to distinguish events at low energy without strict cut in F90-space.
- Results are still preliminary; work to be done to see how much this may improve sensitivity of CENNS-10.
- If successful, begin to incorporate ML approaches to other COHERENT subsystems.

Auxiliary Slides

Calibrations

- Calibrations performed using multiple gamma sources (⁵⁷Co, ²⁴¹Am, ^{83m}Kr).
- Observed light yield: 4.6 \pm 0.4 p.e./keVee
- 9.5% resolution at 41.5 keVee
- Linearity of detector response over energy range of interest.
- Global fit to LAr nuclear quenching data to provide keVnr->keVee conversion.

Neutron Calibrations

- **AmBe** Used to measure NR response in detector and model CEvNS signal.
- **DT Generator** Used to confirm veracity of external neutron simulations

10⁻¹

10⁻²

10⁻³

Fit Results

- Best fit for N CEvNS is 159 ± 43 (stat) ± 14 (syst) ٠
- Null hypothesis rejected at 3.9σ (stat only) •
- Null hypothesis rejected at **3.5σ** (stat+syst) ٠
- Validity of Wilks' theorem checked with pseudo-data. ٠

Events

Subtracted I

0 0.5

1 1.5

2.5 t_{trig} (µs)

3 3.5 4 4.5

Result within 1- σ of SM prediction. ٠

Predicted SM CEvNS	128 ± 17
Predicted Beam Related Neutrons	497 ± 160
Predicted Beam Unrelated Background	3154 ± 25
Predicted Late Beam Related Neutrons	33 ± 33

		0 40
Data Events	3752	ract
Fit CEvNS	$159 \pm 43 \text{ (stat.)} \pm 14 \text{ (syst.)}$	Subt
Fit Beam Related Neutrons	553 ± 34	PL 20
Fit Beam Unrelated Background	3131 ± 23	l lo 10
Fit Late Beam Related Neutrons	10 ± 11	ack
$2\Delta(-\ln L)$	15.0	B-SS-B
Null Rejection Significance	3.5σ (stat. + syst.)	0)

20 40 60 80 10 Reconstructed Energy (keVee)

0

120

0.5

0.55 0.6 0.65 0.7 F₉₀

0.75 0.8

0.85

CEVNS Cross Section

arXiv:2002.10630; submitted to PRL

• Combine best fit CEvNS counts with flux, fid. volume, efficiency uncertainties.

$$\frac{N_{meas}}{N_{SM}} = 1.2 \pm 0.4$$

• Obtain flux-averaged cross section:

$$\sigma_{meas} = \frac{N_{meas}}{N_s \phi \epsilon} = (2.3 \pm 0.7) \times 10^{-39} \ cm^2$$

stat dominated

Constraints on Non-Std Interactions

$$\begin{split} & \text{Modified Cross Section} \\ & Q_W^2 \to Q_{\text{NSI}}^2 = 4 \left[N \left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV} \right) + Z \left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV} \right) \right]^2 \\ & + 4 \left[N (\epsilon_{e\tau}^{uV} + 2\epsilon_{e\tau}^{dV}) + Z (2\epsilon_{e\tau}^{uV} + \epsilon_{e\tau}^{dV}) \right]^2 \,. \end{split}$$

J. Barranco *et al*. Phys Rev D **76** (2007) J. Billard, J. Johnston, B. Kavanagh. arXiv:1805.01798

Fit Projections

Best Fit 1-D Projections

Best Fit 1-D Projections with CEvNS = 0

The COHERENT Collaboration

