

Development of a BDT-based multi-ring sample at the T2K far detector

Trevor Towstego NPML Lightning Talks June 17, 2020

The T2K Experiment

$\nu_{\rm e}$ Charged Current Samples

For ν_{e} appearance analyses:

Event Reconstruction

- Maximum-likelihood algorithm called **fiTQun**
 - Test $e,~\mu\text{,}$ and π^+ hypotheses (charge profiles)
 - Fit/reconstruct track parameters (vertex, direction, momentum, etc.)
- Multi-ring hypotheses tested by sequentially adding e-like or π +-like rings

Event Selection

- Pre-BDT cuts
 - Within fiducial volume
 - 1 decay electron (from $\pi^+ \rightarrow \mu^+ \rightarrow e^+$)
 - Reconstructed ν energy ${<}1.5~\text{GeV}$
- Apply BDT
 - Trained on fiTQun likelihood ratios and reconstructed kinematics
- Final Sample:
 - ~60% $1e1\pi^+$ final state purity
 - ${\sim}12\%$ increase in $\nu_{\rm e}$ CC statistics
- Systematic error studies ongoing

BDT Benefits and Limitations

- Better performance than cuts-based selection
 - Previously struggled to get purity >40%
- However, still limited to reconstruction performance of fiTQun
 - Fit designed primarily for single-ring events
 - Not optimised for multi-ring events, especially considering large number of possible topologies

 As the push to improve systematic errors and expand multi-ring samples for future water Cherenkov experiments continues, reconstruction may become more of a limiting factor in improving sensitivity

Future of ML for Multi-Ring Samples

- Particle ID is a "visual" classification problem
 - Natural to assume CNNs would be beneficial
 - PID of multi-ring topologies, rather than a 1-ring fitter generalised to multiple rings
- Improve kinematic reconstruction
 - Semantic segmentation \rightarrow better reconstruction?
- Lots of interesting work ongoing by others (ML Water Cherenkov group)

