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In rare event searches like those for neutrinoless double beta decay (Ov[33), one of major backgrounds is caused by cosmic muon spallation. To remove
these background events, a precise method with high efficiency is required to separate them from signal events. Machine learning offers a solution to this
problem. For the spherical detector in KamLAND-Zen, convolutional neural networks (CNNs) based on a spherical system provides a way to classify the
data. Besides the classification, a method aiming to reconstruct the direction of particles in a detector is also developed. This poster will cover the concept
and usage of spherical CNNs for KamLAND-Zen’s data, and the current performance of the direction-determination using simulations.

1. KamLAND-Zen: 2. Spherical CNNs: 3. Muon Spallation Classification Study:

e KamLAND-Zen is a Liquid Scintillator (LS) experiment, e Normal CNNs distort the spherical image data from e Radioactive isotopes produced through cosmic muon
consisting of 1800 PMT's to measure light within the cavity. KamLAND-Zen. Our classification analysis adopts the spallation in the LS are background in Ov3p searches. The

e A mini-balloon loaded with 136Xe Liquid Scintillator, Spherical CNNs by Cohen et al.(arxiv1801.10130). The dominant spallation product is 10C, with lifetime © ~ 28 s.
deployed at the center of detector, is the source of 33 events. algorithm is in SO(3) group, following rotational symmetry. e 10C has only one Cherenkov ring and de-excitation gamma’s,
10C is the dominant background in Ov(33 analysis. ¢ In a normal CNN, the kernel scans the input image via while Ov{3B has two Cherenkov rings and not gamma's. The

e For each event, KamLAND detector produces a spherical hit partial regions with fixed size. classification power seems to come from photon timing in
map. In a Spherical CNN, the kernel covers the entire sphere, the first 5 ns.
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4. Directionality Reconstruction Study: ( Though the kernel covers entire spherical detector, feature maps in Spherical CNN retain 5. Result:
information of directions. 2 methods are developed for direction determination. ) e Calssification result:
Spherical CNN background rejection is 71% improved from
® Regional masks method: 61% for normal CNN. Classification separation in Fig.(a) and
Various masks on sphere with corresponding directions are proposed, as in Fig.(a). Outputs are generated by using pre-trained posterior distributions via resampling in Fig.(b).
classification networks. Difference between outputs of masked input and those of original input are calculated. Directions e Directionality result:
corresponding to the most similar masked output are selected. For (33 decay simulation (no scintillation light), 50%
Top 5% masked output directions (yellow) and truth (red) directions are shown in Fig.(b). direction predictions maintain within 60° from truth.
¢ Pooling & fully-connected networks method: Prediction distribution via resampling in Fig.(c).
Normal CNNs are applied after spherical CNN, utilizing deep learning network to study relation between feature maps and
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directions. For spherical MNIST data, 95% direction predictions maintain within 30° from truth directions.
For simulation, to avoid gradient vanishing/exploding, shallow masks (with weight coefficient 0.05%) with similar direction as
events are added as in Fig.(c¢). The output prediction range is shown in Fig.(d), together with the truth direction.
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