Background Identification and Dircetional Reconstruction in LS Detectors using Machine Learning

Zhenghao Fu, for the KamLAND-Zen collaboration Massachusetts Institute of Technology

In rare event searches like those for neutrinoless double beta decay $(0v\beta\beta)$, one of major backgrounds is caused by cosmic muon spallation. To remove these background events, a precise method with high efficiency is required to separate them from signal events. Machine learning offers a solution to this problem. For the spherical detector in KamLAND-Zen, convolutional neural networks (CNNs) based on a spherical system provides a way to classify the data. Besides the classification, a method aiming to reconstruct the direction of particles in a detector is also developed. This poster will cover the concept and usage of spherical CNNs for KamLAND-Zen's data, and the current performance of the direction-determination using simulations.

1. KamLAND-Zen:

- KamLAND-Zen is a Liquid Scintillator (LS) experiment, consisting of 1800 PMTs to measure light within the cavity.
- A mini-balloon loaded with 136 Xe Liquid Scintillator, deployed at the center of detector, is the source of $\beta\beta$ events. 10 C is the dominant background in $0\nu\beta\beta$ analysis.
- For each event, KamLAND detector produces a spherical hit map.

KamLAND Detector

Summary of Backgrounds PRL117, 082503 (2016)

2. Spherical CNNs:

- Normal CNNs distort the spherical image data from KamLAND-Zen. Our classification analysis adopts the Spherical CNNs by Cohen et al.(arxiv1801.10130). The algorithm is in SO(3) group, following rotational symmetry.
- In a normal CNN, the kernel scans the input image via partial regions with fixed size.
 In a Spherical CNN, the kernel covers the entire sphere,

scanning in Euler Angle.

Distortion caused by projection of spherical images

Algorithm of Spherical CNN

3. Muon Spallation Classification Study:

- Radioactive isotopes produced through cosmic muon spallation in the LS are background in $0\nu\beta\beta$ searches. The dominant spallation product is 10 C, with lifetime $\tau \sim 28$ s.
- 10 C has only one Cherenkov ring and de-excitation gamma's, while $0\nu\beta\beta$ has two Cherenkov rings and not gamma's. The classification power seems to come from photon timing in the first 5 ns.

4. Directionality Reconstruction Study: (Though the kernel covers entire spherical detector, feature maps in Spherical CNN retain information of directions. 2 methods are developed for direction determination.)

- Regional masks method:
- Various masks on sphere with corresponding directions are proposed, as in Fig.(a). Outputs are generated by using pre-trained classification networks. Difference between outputs of masked input and those of original input are calculated. Directions corresponding to the most similar masked output are selected.
- Top 25% masked output directions (yellow) and truth (red) directions are shown in Fig.(b).
- Pooling & fully-connected networks method:

 Normal CNNs are applied after spherical CNN, utilizing deep learning network to study relation between feature maps and directions. For spherical MNIST data, 95% direction predictions maintain within 30° from truth directions.

 For simulation, to avoid gradient vanishing/exploding, shallow masks (with weight coefficient 0.05%) with similar direction as events are added as in Fig.(c). The output prediction range is shown in Fig.(d), together with the truth direction.

5. Result:

- Calssification result:
 - Spherical CNN background rejection is 71% improved from 61% for normal CNN. Classification separation in Fig.(a) and posterior distributions via resampling in Fig.(b).
- Directionality result:
 For ββ decay simulation (no scintillation light), 50% direction predictions maintain within 60° from truth.
 Prediction distribution via resampling in Fig.(c).

