Shared Data Facility (SDF) Overview and Update

Yemi Adesanya

May 8th 2020, Future Computing Frontiers at SLAC

• Deliver common shared computing infrastructure to tackle massive throughput data analytics at SLAC

- Enable critical, data-heavy computing workflows in several key mission areas:
 - SLAC users facilities (LCLS, UED, CryoEM, SSRL), Machine Learning, HEP, FES

- The SDF infrastructure would offer:
 - High-throughput and high capacity storage
 - Comprehensive set of frameworks, tools and services
 - Baseline capabilities for all SLAC users
 - A cost model for stakeholders with demands that exceed the baseline

- The benefits of a centrally integrated hardware architecture:
 - **Increased operational efficiencies** (lower administration overhead)
 - Coordinated procurements for Economies of Scale
 - Increased utilization by leveraging 'idle/free' compute cycles
- Promote a model for sustainable scientific computing services
 - Drive lifecycle and continued support for modern, capable solutions to deliver the science

• Strong Alignment to Science Goals and Priorities

• Partner with science via SDF steering and advisory committees

The Challenge: Raise the Bar for "Baseline" Scientific Computing

- What do we consider to be "Baseline"?
 - A Service that addresses a **common computing requirement** (not unique to any specific project or application)
 - A Service typically managed and supported through a central organization (OCIO SCS team)
 - A level of service the user community expects from the lab as a "birthright" entitlement (for free)
- Why is Baseline Scientific Computing important?
 - Baseline services are at the core of many (critical) Scientific applications
 - Baseline capabilities help seed new science initiatives before any project-specific grants are awarded
 - Baseline solutions foster labwide collaboration and partnership

The Challenge: Raise the Bar for "Baseline" Scientific Computing

- What is the risk posed by lack of support for Baseline?
 - No ongoing strategy to address the current and future core computing needs of the lab
 - No sustainable lifecycle or modernization
 - Decentralization leads to inefficiencies, lack of governance, policy, etc
 - Science and collaboration suffers

Making the Case for Shared Integrated Infrastructure

- LCLS-II and CryoEM applications/workflows demand similar high-throughput solutions
- LCLS-II infrastructure could potentially contribute to the Baseline Capability
 - 70% of LCLS-II compute time could run other science without impacting LCLS-II operations
- **SLAC Machine Learning initiative** also requires optimal bandwidth between compute (GPU) and storage
- Integrate compute and storage hardware projections from these facilities/projects
- Architect a common infrastructure and consider scalability and total operating cost

	Stage 1 (2019-2024)	Stage 2 (2025-2028)	Main Driver
CPU Compute	1 PFLOPS		LCLS-II
GPU	1 to 10 PFLOPS	> 10 PFLOPS	Cryo-EM + LCLS-II + ML
Disk Storage	10 to 30 PB	50 to 100 PB	Cryo-EM + LCLS-II
Tape Archive	10 to 100 PB	100 to 500 PB	HEP + LCLS-II
Border network	200 Gb/s	1 Tb/s	LCLS-II

SDF is NOT about deploying Siloed Solutions

- Our existing siloed solutions:
 - Are **Inefficient** in terms of scalability, utilization and support
 - Hinder sustainability of compute, network and storage resources
 - Prevent implementation of baseline services to provide meaningful resources for all users; complicates use
 - Impact Iong-term planning

Silos limit our ability to collaborate and align on Computing Strategy!

So what exactly is SDF?

SDF is more than a "facility", it's an overarching Computing Strategy

- An integrated hardware design that includes Storage, Compute, GPU and Fast Networking?
 - Yes, all of the above. The focus is on fast access to storage from the compute servers
- A funding model for all of this hardware?
 - Yes, SDF will standardize on limited number of hardware configurations and coordinate combined purchases with stakeholders / business managers
- A Datacenter Strategy?
 - Yes (See Christian Pama). We need to carefully plan for the future infrastructure as it scales over time
- An Organization?
 - We'll develop a matrixed organization of talent distributed across the lab. It will take an entire village to pull this off!
 - SDF will be overseen by a steering committee comprised of key science representatives to ensure alignment with Mission requirements and priorities
- A set of policies and best practices?
 - SDF must ensure resources are managed effectively through policies and controls
 - (examples: storage quotas, hardware lifecycle refresh, data retention periods)
- Raise the bar for Baseline Scientific Computing
 - Seek lab funding to sustain the baseline
 - Share project resources (LCLS-II) when feasible
 - Continual engagement with the Science Community to stay aligned with evolving requirements

SDF Phase 1 Deployment

Yemi Adesanya

May 8th 2020, Future Computing Frontiers at SLAC

SDF Phase 1 Storage

We're putting the finishing touches on the new storage:

- Two DDN Exascaler 18K controllers for LCLS-II, CryoEM, and Baseline (lab-funded)
 - 765 x 14TB NL SAS drives
 - 52 x 7.68TB SAS SSDs
 - 20 x 1.92TB SAS SSDs
 - NVMe Support
 - Up to 1800 HDDs per controller
 - Expand a single namespace across multiple controllers and storage pools
- ~7.5PB "/sdf" filesystem (Lustre version 2.12.x)
 - Data-On-Metadata ensures the first N bytes of every file are written to SSD
 - Home directories for the SDF compute nodes (no AFS)
 - Shared group space
 - Expect maximum aggregate throughput of ~60GB/sec
 - Final benchmarks once we have the new compute cluster online
 - We are not hitting the controller limit yet (so add more drives for more performance)
- Small shared scratch filesystem
 - For SDF compute nodes only
 - True 'scratch' = it will be purged

What about Storage-as-a-Service?

- SDF Baseline storage replaces StaaS
- SDF Baseline is lab-funded! But "free" only up to a certain point!
- We'll develop some initial user and project quota limits and usage guidelines
- 25GB home directories for SDF Compute nodes
- Baseline will cover most StaaS migrations (30TB to 60TB)
- Baseline will cover *some* shared project space. How do we decide?
 - SDF Steering committee to review baseline storage requests
- Bigger demands (exceed baseline entitlement) will need project funding
 - Minimum buy-in is currently 45x14TB drive pool
- SDF Storage Cost Model coming soon
- We will limit access from legacy environments
- The intent is to build up SDF as we retire older clusters

Storage Cost Model (the tough part)

- How do we sustain storage in the long-term?
- What components should be treated baseline and funded with indirect?
- Purchase vs. Leasing?

Component	Cost
Storage Controller	\$129,864 each
Drive Enclosure	\$7,200 each
Enclosure Cables	\$151 each
14TB NL SAS drive	\$496 each
7.68TB SSD	\$2,704 each
1.92TB SSD	\$944 each
Vendor Support	Increases with the amount of storage

SDF Phase 1 CPU

- Dell PowerEdge C6525 Servers
- Node Specs:
 - 2x 64-core AMD Rome EPYC 7702 CPUs @ 2.0GHz
 - AVX-256 SIMD
 - Up to 1 DP TFLOP
 - 512GB RAM (4GB per core)
 - Mellanox ConnectX-6 100Gb/s HDR100 InfiniBand Adapter
 - 10GbE Base-T Ethernet
 - 960GB SSD

• 11264 total cores or 176 TFLOPs

Project	# Cores	
LCLS	2816	
Fermi	2048	
SUNCAT	5376	
CryoEM	384	
HPS	384	
SuperCDMS	256	

Integrating 11 new Baseline funded GPU nodes as part of SLAC Machine Learning initiative. Thank you, Daniel Ratner!

SLAC

- Dual Intel Skylake 12-Core Processors
- 192GB RAM
- 10 x 2080Ti (11GB Mem)
- 6TB local SSD "scratch"

Existing CryoEM GPU servers will also be migrated to SDF

Networking

- New ethernet switches for SDF
 - "Rack-level" switches instead of fabric extenders to the central core
 - SDF VLANs with suitable access controls (security model)
- New 100Gb Infiniband Fabric
 - Optimal bandwidth between SDF Compute and DDN Storage
- Flber trunk for ethernet and IB links between B050 1st floor <-> 2nd floor
- Switches and Fiber purchased with OCIO and LCLS funds

Datacenter Challenges

- We are deploying Phase 1 solutions in B050 Datacenter
 - Storage on the 2nd floor with generator-backed power
 - Compute on the 1st floor with house power
- Decommission EOL clusters and storage as we roll out SDF
- Repurposing racks and power infrastructure is a challenge requiring some trial and error
- Special thanks to Networking and Datacenter Team (Mark Foster, Christian Pama and Matt Wood)

SDF is a greenfield for modern solutions

SDF migration will not be seamless, but we need to modernize

No dependency on AFS

• Home directories on the new storage ("/sdf/home/...")

Slurm is our batch scheduler for SDF

- Open Source
- Comprehensive support for GPU scheduling (AKA fairshare)
- Widely used within the research computing community: SRCC, NERSC, etc.
- Slurm Support can be purchased from SchedMD

Active Directory authentication

- AD "Windows" accounts for logins
- Integrate with open-source Identity Management framework
- Avoid building dependencies on dated, homegrown infrastructure
- More potential for streamlined and automated account provisioning

CentOS 7

• Run legacy RHEL6 applications in Singularity containers

Change is inevitable but it's an opportunity to deliver more for science

Stakeholder requirements will shape SDF capabilities

- The success of SDF will be measured on how we align with the science needs
- SDF stakeholders will provide requirements through a steering committee
- Hardware will be purchased/leased and lifecycled periodically based on current supported standards
- We anticipate a heterogenous (but controlled) hardware environment as technology and requirements evolve
- We must be flexible and responsive