10–24 Jul 2020
America/Chicago timezone

Deep learning in DUNE

22 Jul 2020, 10:00
40m
A collaboration/project summary talk Day 4 Morning

Speaker

Saul Alonso Monsalve (CERN)

Description

The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. In addition to the above, this talk will also discuss other deep learning studies in DUNE.

Primary author

Presentation materials