DIDACTS
Data-Intensive Discovery Accelerated by Computational Techniques for Science

Aaron Higuera
On behalf of DIDACTS
How do we realize the full impact of machine learning in the physical sciences?
DIDACTS is a collaboration of physicist and machine learning experts with an overall goal of incorporate scientific knowledge into machine learning and data science methods in the context of scientific disciplines.
DIDACTS is a collaboration of physicist and machine learning experts with an overall goal of incorporate scientific knowledge into machine learning and data science methods in the context of scientific disciplines.

- How do we realize the full impact of machine learning in the physical sciences?
- How do we put our own knowledge in and get uncertainty out?
- How we incorporate the physics we know into ML in such that it can uncover the physics we do not know?
DIDACTS

One example: Dark Matter

- For every kilogram of ordinary matter, the Universe contains \(~5.4\) kg of Dark Matter
- At DIDACTS we are looking into the challenging problem of Dark Matter direct detection using XENON1T experiment as test bed

✦ How do we realize the full impact of machine learning in the physical sciences?
✦ How do we put our own knowledge in and get uncertainty out?
✦ How we incorporate the physics we know into ML in such that it can uncover the physics we do not know?
DARK MATTER

• 85% of the Universe consists of something that we do not understand: Dark Matter (DM)
• If DM would be a particle unlike any we have encountered in the SM, this would revolutionary our understanding of the universe
• How can we search for DM?

Direct detection

Production at colliders

Indirect detection

χ → χ

χ → χ

P

P

A. Higuera

Neutrino Physics and Machine Learning Workshop, 10-24 July, 2020
The XENON Experiment

• An international collaboration of ~160 scientist from 26 institutions
• Located in the LNGS in Italy (deep underground 3600 mwe)
• XENON1T detector is a LXe dual-phase TPC with 1.3 ton LXe of fiducial mass

A. Higuera

Neutrino Physics and Machine Learning Workshop, 10-24 July, 2020
Dual-phase Time Projection Chamber

- Dual-phase Time Projection Chamber
- 0.125 kV/cm E-field w/ 150 cm drift length
- Prompt signal (S1): from scintillation (UV light)
- Delayed signal (S2): electrons are drifted and extracted in the gaseous phase producing second scintillation
- This detection system allows
 - Particle ID \((S2/S1)_{NR,WIMP} < (S2/S1)_{ER}\)
 - Energy reconstruction
 - 3D position reconstruction \((X, Y, Z)\)

\[
E = W \left(\frac{S1}{g_1} + \frac{S2}{g_2} \right)
\]
DM DIRECT DETECTION CHALLENGES

- Direct detection:
 - Need ultra-radio pure environment
 - Backgrounds are ER-like and NR-like
 - 10-50 Hz background rates vs 1 DM event (maybe)
 - Low energy searches [KeVs]

A. Higuera

Neutrino Physics and Machine Learning Workshop, 10-24 July, 2020
• Position reconstruction is a key player to reduce background
 • Fiducial volume

What about 0vββ?

LXe DM experiments aim for competitive sensitivity, via restricted fiducial volume to reduce backgrounds, and projected 1% energy resolution

The sensitivity to the 0vββ process is proportional to both energy and position resolutions

A. Higuera

Neutrino Physics and Machine Learning Workshop, 10-24 July, 2020
Position Reconstruction

- The Z-position of the interaction is calculated from the drift time, it requires S1 and S2

- X, Y position can be reconstructed from S2 (hit pattern)
 - Maximum PMT method
 - Maximum PMT charge-weighted sum

- The aforementioned methods can only give 127 unique positions (PMT positions) and are biased towards the center

A. Higuera
Position Reconstruction

- The Z-position of the interaction is calculated from the drift time, it requires S1 and S2
- X,Y position can be reconstructed from S2 (hit pattern)
- “Classical ML approach” : Multi-layer Neural Network
 - Four layers,
 - 127 input layers (#PMTs)
 - two hidden layers and two output layers (X,Y)
Position Reconstruction

- “Classical ML approach” Multi-layer Neural Network

- Any improvements on position reconstruction would be critical

A. Higuera

Neutrino Physics and Machine Learning Workshop, 10-24 July, 2020
Position Reconstruction

• Why no CNN?
 • No grid-structured data
 • Converting unstructured and sparse data can lead to loss of information
Graph Neural Networks

- Graphs
 - **Nodes** are quantized objects with some arbitrary features
 - **Edges** describe the relationship between nodes
- Data graph-structured
Graph Neural Networks

Each node is a PMT

Input features:
 - PMT location (X,Y)
 - S2 area [pe] (waveform area)

Edges, describe the relationships between nodes
 - What is the best way to describe it?
Graph Neural Networks

- Each node is a PMT
- Input features:
 - PMT location (X,Y)
 - S2 area [pe] (waveform area)
- Edges, describe the relationships between nodes
 - What is the best way to describe it?
 - Use Delaunay triangulation, this was chosen for being well connected without being definitely over-connected
- MC simulation: GEANT-based optical simulation
GCNN

Future work:
- Dead PMTs (missing nodes)
- Complete MC simulation: add detector effects (PMT gains, etc)
- Graph optimization
Probabilistic Graphical Models

- How do we put our own knowledge in and get uncertainty out?

Original image credit: xkcd
Probabilistic Graphical Models

How do we put our own knowledge in and get uncertainty out?

- Probabilistic Graphical Models
- Probabilistic: Encoding uncertainty via conditional probability
 \[\Pr(X|Y = \text{observations} + \text{knowledge}) \]
- Graphical:
 - Nodes: random variables
 - Edges: dependencies
 - Missing edges: independencies
- A common example of PGM are Bayesian Networks:
Probabilistic Graphical Models

\[\Pr(X|Y = \text{observations + knowledge}) \]

- Having an algorithm that provides uncertainties in the reconstructed position is a plus
- Having an accurate position reconstruction with a quantified uncertainty will allow to maximize the use of detector volume fiducialization
- E.g. having a fiducial volume with 99% certainty
An Inverse Problem Approach

- The prediction of observations, given the values of the parameters that defined a model constitutes the “forward problem”
- The “Inverse problem” consists in using the results of actual observations to infer the values of the parameters characterizing the system (model)
An Inverse Problem Approach

- Inverse problem does not require labeled training data
- For new physics searches e.g. DM searches, labels are only available in simulation and are model dependent
- In principle, by observing the data we can provide an estimation for the unknown parameters (position and energy) with an inverse problem formulation

Diagram:

A **forward** problem

- **Model**
 - Physical properties, unknowns

- **Observables**
 - Measurement data

A **inverse** problem
Summary

- DIDACTS aims to test out multiple novel methods to enhance our knowledge
- DIDACTS is looking into the challenging problem of extreme rare searches using XENON1T as test bed
 - Position reconstruction is a key player to reduce background for extreme rare searches such as DM and 0vββ
 - Given graph-structured nature of XENON1T data DIDACTS is looking into:
 - Graph Neural Networks for position reconstruction
 - Can Probabilistic Graphical Models provide additional information(energy) with a quantified uncertainty?
 - An Inverse Problem approach for position and energy reconstruction
- More information about DIDACTS at https://didacts.org