

Demonstration of background rejection using deep neural networks in the NEXT experiment

C. Adams, M. Del Tutto, J. Renner, K. Woodruff, **M. Kekic**

Neutrino Experiment with a Xenon TPC

DIPC • U. de Girona • IFIC • U. Autónoma de Madrid • U. de Santiago de Compostela • U. Politécnica de Valencia • U. de Zaragoza

ANL • U. Texas at Arlington • FNAL

- Harvard U. Iowa State U. LBNL
- Texas A&M U.

U. de Aveiro • U. de Coimbra

Ben-Gurion U. of the Negev

U. Antonio Nariño

Co-Spokespeople: Prof. J.J. Gómez Cadenas

(DIPC)

Prof. D. R. Nygren (UTA)

Neutrino Experiment with a Xenon TPC

- NEXT-White (NEW) operating a 5 kg-scale demonstrator at the Canfranc Underground Laboratory (LSC)
- NEXT-100 to be commissioned in 2021:
 100 kg Xe, enriched to ¹³⁶Xe(90%)

NEW: simulation and reconstruction

Geant4 based simulation:

- simulate energy deposits ('hit') of charged particles in the Xe gas
- simulate PMTs/SiPMs responses

Reconstruction (same for data and MC):

- find XYZ position of hits based on SiPM signal; assign energy measured at PMTs plane
- correct and calibrate hit energy
- voxelize event such that voxel energy is the sum of hits energy inside the voxel

Neutrinoless double beta decay

Essential:

1. Good energy resolution

Neutrinoless double beta decay

Essential:

- 1. Good energy resolution
- 2. Good background identification

arXiv:1905.13625 JHEP 10 (2019) 051

Background identification

At the end of the track the energy deposited per unit length increases- Bragg peak (blob):

• Signal : 2 blobs

Background : 1 blob

Previous study

• Initial Monte Carlo-based study: JINST 12 (2017) 01, T01004 (arXiv:1609.06202)

	Signal Events		BG Events (²⁰⁸ Tl)		BG Events (²¹⁴ Bi)	
Cut	$2 \times 2 \times 2$	$10 \times 10 \times 5$	$2 \times 2 \times 2$	$10 \times 10 \times 5$	$2 \times 2 \times 2$	$10 \times 10 \times 5$
(Initial events)	1.0	1.0	1.0	1.0	1.0	1.0
Energy	7.59×10^{-1}	7.59×10^{-1}	2.27×10^{-3}	2.27×10^{-3}	1.42×10^{-4}	1.42×10^{-4}
Fiducial	6.71×10^{-1}	6.68×10^{-1}	1.19×10^{-3}	1.17×10^{-3}	8.62×10^{-5}	8.54×10^{-5}
Single-Track	3.75×10^{-1}	4.79×10^{-1}	7.90×10^{-6}	1.81×10^{-5}	3.84×10^{-6}	8.75×10^{-6}
Classification*	3.23×10^{-1}	3.67×10^{-1}	7.70×10^{-7}	2.41×10^{-6}	2.90×10^{-7}	9.59×10^{-7}
Classification (DNN)	3.23x10 ⁻¹	3.67x10 ⁻¹			1.80x10	⁻⁷ 8.22x10 ⁻⁷

Now we can test it on data

Proof-of-concept in NEXT-white with e⁺e⁻ track

arXiv:1905.13110 (2019) JHEP 10 (2019) 230

Calibration with 137 Cs and 228 Th sources Achieved <1% Resolution at FWHM near Q_{gg}

Proof-of-concept in NEXT-white with e⁺e⁻ track

 γ 2614.5 keV from ²⁰⁸TI

We can test our model on DE (double escape) peak:

Signal : e⁺e⁻ track

Background : single e⁻ track

Can calculate ratio of the signal (gaussian) and the background (exponential)

Event example

11

Classical approach

- 1. Find the track based on graph theory
- 2. Identify track extremes
- 3. Calculate energy inside the blobs

Classical approach

Geant4 Monte Carlo:

background (single electrons) and signal (electron-positron pair) blob energies distributions

DNN based approach

output, 2

- Input size 40X40x110 (voxel size 10x10x5 mm³)
- Energy of every event normalized to 1 (so the network does not have information about total event energy)
- ~500000 fiducial events, 35% signal

validation MC energy distribution

We experimented with both standard dense networks (keras/tf implementation) and sparse networks (Submanifold Sparse Convolutional Networks in pytorch) achieving similar results

Plots in this talk are for sparsenet

Evaluation metrics

1. AUC-ROC*: Degree of distinguishability between classes – higher is better

True Negative rate
$$(\frac{\text{rejected background}}{\text{total background}})$$

True Positive rate
$$\left(\frac{\text{accepted signal}}{\text{total signal}}\right)$$

2. Figure of merit :
$$\frac{\epsilon_{sig}}{\sqrt{\epsilon_{bck}}}$$
 — higher is better

The sensitivity to the half-life of the ββ0v decay is proportional to f.o.m in background-limited experiments (arXiv:1010.5112v4)

Evaluation based on energy spectrum

- 1. Fit the histogram to gaussian (signal) and exponential (background) $N_{bck}^0,\ N_{sig}^0$
- 2. Integrate to calculate total number of signal and background $N^i_{bck},\ N^i_{sig}$
- 3. Apply $i^{\rm th}$ cut on DNN prediction and calculate

$$\epsilon_{sig}^i = rac{N_{sig}^i}{N_{sig}^0} \qquad \epsilon_{bck}^i = rac{N_{bck}^i}{N_{bck}^0} \qquad ext{f.o. m} = rac{\epsilon_{sig}^i}{\sqrt{\epsilon_{bck}^i}}$$

Training on MC, evaluating on data

overfitting, evaluated in lowest validation point

Prediction on data is biased towards lower values

Known MC/data differences

From classical analysis we know there are some MC/data differences, e.g. track length, bob energy...

arXiv:1905.13141 JHEP 10 (2019) 052 To make network robust to those differences we apply on-fly augmentation

Can we predict performance on data without using the data?

Try to predict data/MC disagreement looking at disagreement of features distributions on sidebands.

Assumption: domain shift does not depend on type of events — if network is robust to data/MC differences on background events it will be on signal events as well.

To quantify the distances of distributions in Ndim space we used Energy test statistics:

$$A := \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \|x_i - y_j\|, B := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|, C := \frac{1}{m^2} \sum_{i=1}^m \sum_{j=1}^m \|y_i - y_j\|$$

$$E_{n,m}(X,Y) := 2A - B - C$$

Sideband discrepancy tracking

Compare distributions of extracted features - first flatten layer

Sideband discrepancy tracking

Compare distributions of extracted features - first flatten layer

Permutation test to extract p-value, mix MC/data samples and calculate the fraction of trials (1000 trials) in which the distance of original MC/data is smaller than obtained one (small p-value allows us to reject the null hypothesis - MC and data come from the same distribution)

Training with augmentation

Much nicer result!

Comparison with classical analysis

Summary

- We have used NEXT-White double escape peak calibration data to demonstrate topological discrimination of signal vs background
- There are MC/data discrepancies that affect the performance on data
- The network can be made more robust with the help of data augmentation
- Analysis of background sidebands helps determining optimal point for evaluation on data
- Future plans : next talk!

BACKUP SLIDES

NN prediction distributions

Correlations

Correlation with eblob2

Some events predicted signal with augmented training and background without augmentation

example events with different predictions w/o augmentation eblob2 = 0.37eblob2= 0.29 eblob2= 0.34 eblob2 = 0.35eblob2= 0.45 eblob2 = 0.32eblob2= 0.29 eblob2 = 0.33eblob2 = 0.26eblob2 = 0.28