
MC Recon and Hpstr
- Analysis Workshop 2019 data -

06/04/2020

PF, TT, OM, CB

2

Introduction / Outline

• The first test passes for the reconstruction of 2019 MC and Data started
last week after several updates have been included in the reconstruction
code during the past months

• In this talk I’m going to provide
• Brief summary of available Data/MC

• (I’m not going to talk about checks on data today)
• A brief summary of changes that went into track reconstruction code
• Available steering files for MC reconstruction

• LCIO ntuple content in the produced files
• Timing on current reconstruction pipeline
• Current issues in reconstruction pass
• Analysis of LCIO ntuples: hpstr package
• Personal thoughts for discussion on MC production /

reconstruction

3

Available MC and Data samples

• 2019 Data and MC samples are stored in full at jLab and can be cached / transferred if needed.
• A certain amount of 2019 data has been processed and stored on SLAC machines. Be

aware of the reconstruction differences and details:
• Few partitions for each “good run” of 2019 => old snapshot of hps-java master, v1 detector
• Large amount of Run 10031 => 

- Processed with iss687 hps-java branch, v2 detector
• Skims for 10103 and 9921 for dedicated studies

• The available reconstructed MC made by TT has been processed with branch iss677
• As the efforts to produce better reconstruction code/LCIO files/calibrations are ongoing,

this information will be outdated soon.

• Useful links about samples location, production details and processing examples are/will be
posted at these locations:
• MC summary page
• 2019 Data Summary page

https://github.com/JeffersonLab/hps-java/tree/iss687
https://github.com/JeffersonLab/hps-java/tree/iss677
https://confluence.slac.stanford.edu/display/hpsg/2019+MC+Data
https://confluence.slac.stanford.edu/display/hpsg/2019+Reconstruction+Passes

4

Few different hps-java versions…

• The current hps-java master includes the changes made in iss677: 
- A full review of what went in can be checked in #685 pull request but in
few words it includes: 
 - Updated trigger drivers for MC readout simulation 
 - Use of SiPixel class for modelling the SVT thin layers 
 - Changes to HelicalTrackHitDriver, GBLRefitter, KalmanPatRecHPS
to run over 2019 geometry with new thin layers 
 - Several other minor tweaks/fixes/technicalities..

• Together with this branch comes a “recommended” steering-file for
checking 2019 MC Reconstruction:
• PhysicsRun2019MCRecon.lcsim

https://github.com/JeffersonLab/hps-java/tree/master
https://github.com/JeffersonLab/hps-java/pull/685
https://github.com/JeffersonLab/hps-java/blob/iss677/steering-files/src/main/resources/org/hps/steering/recon/PhysicsRun2019MCRecon.lcsim

5

Reconstruction configuration

• The tri-trig readout sample has
been generated with: 
- Top Ly7 (old ly6) off  
- Axial Bottom Ly5 (old ly4)
off

• Quite standard job
configuration for Hit formation

• Track Finding uses few
strategies: only one succeeds
for bottom tracks

• To the nominal reco has been
added also KF track finding
and fitting interfaced with recon
drivers

• TrackTruthMatching is provided
for offline studies. 
 - Tracks are matched to
MCParticles which are used to
form TruthTracks for
performance checks.

h_top
Entries 17328
Mean 5.355
Std Dev 3.217

0 2 4 6 8 10 12 140

200

400

600

800

1000

1200

1400

1600

1800

2000

2200 h_top
Entries 17328
Mean 5.355
Std Dev 3.217

h_top

h_bot
Entries 18997
Mean 5.273
Std Dev 3.667

h_bot
Entries 18997
Mean 5.273
Std Dev 3.667

HPS Internal

h_top
h_bot

only one that succeeds for bottom

For KF tracks, Vtxing  
finalStateParticles

For truth links in  
LCIO outfile

Nominal Helix+GBL

HitsOnTrack for KF Tracks

https://github.com/JeffersonLab/hps-java/blob/master/analysis/src/main/java/org/hps/analysis/MC/TrackTruthMatching.java

6

Reconstruction configuration - ReconParticleDriver

• Vertices are formed with both Helix+GBL and KF
Tracks

• Vertices formed with KF Tracks have “_KF” in
CollectionName

• Vertices are formed without requiring cluster/track
matching

• Still working to check track-cluster matching in 2019
• Nominal settings for BS position (0,0,-7.5)  

Size was taken from SVT wire scan to resemble data
(simulation was done with sigma_x(y) = 0 mm)

• TrackClusterTimeOffset from checking ClusterTime
distribution

• Tracks time distribution needs to be cross checked
as double peak wasn’t expected

From MC sim configuration

Reco Ecal Clusters
Entries 3428
Mean 30.19
Std Dev 12.95

60− 40− 20− 0 20 40 60
time [ns]

100

200

300

400

500

600

700

800

900

1000 Reco Ecal Clusters
Entries 3428
Mean 30.19
Std Dev 12.95

htime

KF Tracks
Entries 3837
Mean 5.479−
Std Dev 23.71

KF Tracks
Entries 3837
Mean 5.479−
Std Dev 23.71

GBL Tracks
Entries 4080
Mean 7.707−
Std Dev 21.29

GBL Tracks
Entries 4080
Mean 7.707−
Std Dev 21.29

Reco Ecal Clusters

KF Tracks

GBL Tracks

https://confluence.slac.stanford.edu/display/hpsg/2019+MC+Data

7

Processing time - Tri-Trig ***without Beam***

• A summary breakdown of the
CPU time spent in MC
processing is shown

• File tested: /nfs/slac/g/hps3/mc/
mc_2019/readout/tritrig/singles/4pt5/
tritrig_123.slcio

• With the current strategies,
tracking takes: 
- ~22% in seeding and global
fitting stage  
- ~22% in GBL Refitting stage

• Kalman track finding and fitting
takes ~12% of the event time

• Some non-negligible amount
of time is spent in the
HpsReconParticleDriver (8%)
and RawHit Fitting (6%)

jProfiler
Evaluation version, remotely attached to cent7a,
readout to LCIO step

Total Tracking time ~40% in tri-trig signal
without beam background
See Backup for a more detailed dump

https://www.ej-technologies.com/products/jprofiler/overview.html

8

Processing time - Tri-Trig ***with Beam***

• Drastic increase in tracking time
• File tested: /nfs/slac/g/hps3/users/bravo/mc/

mc2019/tritrig/readoutFromJLAb/tritrig_1.slcio

• With the current strategies, tracking
takes: 
- ~98% in the SeedTracker (60% in
the extension, 27% in the
confirmation, 12% in the fitting) 
- Mostly due to very large cuts in
rmsTime in SeedTracker (1000ns),
but also setting it at (20ns) doesn’t
help (98% => 93% see Backup) 
- ~0.7% in GBL Refitting stage

• Kalman track finding and fitting takes
~0.3% of the event time in this
conditions

• All the rest of the event reconstruction
time becomes negligible

• Not sustainable for high-stat MC or
reReco passes.

• Total time: 25m for ~150 events on
cent7a => 10s/event

jProfiler
Evaluation version, remotely attached to cent7a,
readout to LCIO step

Total Tracking time ~98% in tri-trig signal
with beam background. Not sustainable in long
run. A more detailed dump in the backup

https://www.ej-technologies.com/products/jprofiler/overview.html

9

Processing time - Tri-Trig ***with Beam*** KF Only

• Tested Kalman only
reconstruction

• Kalman track finding and
fitting takes ~30% of the
event time in this conditions

• Writing LCIO output takes
~40%

• Something can be recovered
from SvtRawHitFitting and
HPSReconDrivers

• Only ideal => GBL refitter
should run on KF Tracks.

• Total time: 1m40s for ~860
events on cent7a => 0.11s/
event jProfiler

Evaluation version, remotely attached to cent7a,
readout to LCIO step

Writing output data is slower than KF tracking, 
second slowest.
Hit Fitting is a considerable time. Vtxing ~5%

https://www.ej-technologies.com/products/jprofiler/overview.html

10

Re-reco from LCIO steering files

• Some time can be saved if
running from pre-
reconstructed LCIO files,
cleaning up proper
containers

• I’ve made a steering file to
run on MC from pre-
reconstructed LCIO files:
iss687_dev =>
PhysicsRun2019MCRecon
_LCIO.lcsim

• Save 12% processing time
from RawFitting

• If ran with KalmanOnly:
~0.09s / evt

https://github.com/JeffersonLab/hps-java/blob/iss687_dev/steering-files/src/main/resources/org/hps/steering/recon/PhysicsRun2019MCRecon_LCIO.lcsim
https://github.com/JeffersonLab/hps-java/blob/iss687_dev/steering-files/src/main/resources/org/hps/steering/recon/PhysicsRun2019MCRecon_LCIO.lcsim
https://github.com/JeffersonLab/hps-java/blob/iss687_dev/steering-files/src/main/resources/org/hps/steering/recon/PhysicsRun2019MCRecon_LCIO.lcsim

11

Bonus: Checks on 2019 Data Run 10031

• Checked Reco Time on Data
• File tested: /nfs/slac/g/hps_data2/data/

physrun2019/hps_010031/hps_010031.evio.00054
• SeedTracker and

HelixFitting take ~33%
• RawHitFitting takes 32% of

processing time, partly due to
monster events rate.

• KF up to 15%, GBL Refitting
7%

• Writing data about 5% of the
time

• 50 seconds for 400 events
from evio->LCIO:  
0.125s / event

jProfiler
Evaluation version, remotely attached to cent7a, evil
to LCIO step

Data processing will be slow with current processing
strategy. Something can be

https://www.ej-technologies.com/products/jprofiler/overview.html

12

Few words on timing checks

• I’ve tried to time the various reconstruction configurations to have a feeling
of how long will take to process and calibrate 2019 data

• I used jProfiler. It’s the first time I use such profiler, so some things might
not be very precise.

• Disclaimer: 
- MC without beam can be compared with MC with beam as the same
steering file was used. 
- Data cannot be directly compared to MC processing as some extra
cleaning of the events is applied.

• SeedTracker rmsTimeCut 1000ns (20ns) in MC (Data)
• maxTrackerHits 250 (200) in MC (Data)

• However the checks still give a feeling of the processing time with
the current SW and steering files.

13

Introduction

• Hpstr (Heavy Photon Search Toolkit for
Reconstruction) is a C++/python based package for
data analysis.

• The package does:
• Conversion from LCIO -> ROOT ntuples (a la

DST), defining a ROOT based EDM with objects,
i.e. tracks/particles/vertices, and links (TRef)
between them

• It provides ROOT tuples processing to produce
histograms and/or flat-Ntuples (even if in principle
one can do the same from LCIO if needed)

• Provides a Post processing of histograms or flat-
Ntuples as well.

• The package repository:
• https://github.com/JeffersonLab/hpstr
• A README is provided with full instructions from

checkout to processing LCIO files
• A full description of the actual content and

structure of the package is beyond the scope of
this talk today

https://github.com/JeffersonLab/hpstr

14

Current Status

• HPSTR has now a fully
implemented processing of LCIO
to a ROOT n-tuple that has the
structure for performing both
vertex and BH analysis

• Content:
• Unconstrained and

TargetConstrained V0s
• Particles containing

associated tracks and clusters
• All tracks of the events

containing the hits on tracks
• All clusters in the Calo

containing Calo hits
• Event Information  

including trigger flags
• Apart from that, single

processors can be defined for
specific tasks

15

Example - Ntuple Processing and Vtx Cutflow

• Hpstr is currently implementing event selections in
json files to keep an ordered and clear structure for
bookeeping cuts

• Cut values, order and presence can be changed
without recompilation
• Easy to add orthogonal control/validation/

signal regions
• Cutflows are generated automatically

• Vertex preselection cutflow matches between flat-
tuple based analysis and hpstr based analysis =>
analysis flow validated

analysis/selections/vtxSelection.json

— hpstr
-|- vtx tuples

Sorry, plot on old selection, but still valid

16

Examples - From Tracking/Hit studies to Statistical
interpretation

• Hpstr can provide support for also for performance studies:
• Tracking analysis, i.e. Kalman-GBL comparison, track

efficiency, truth matching…
• Baseline extraction for SVT hits including gaussian+landau

fit for charge deposition and baseline extraction
• Calo/Hodo hits/cluster studies

• Of course analysis flow, radiative fraction and statistical
interpretation for BH analysis are included in the framework too

• LOT of these plots are straightforward to produce and can
be easily made by others that want to help the validation/
find bugs/help producing results

Expected limits (10% Lumi) 
from 2016 BH search

baseline fits

Track Params 
pulls

17

Some fast checks of tri-trig+beam MC 2019

• Cuts: 
- ElectronP < 4.5 GeV 
- Ele/Pos Chi2 < 25 
- Ele/Pos n2DHits>=7 [by
mistake, should have been >] 
- Ele/Pos nSharedHits<5 [no
effect, due to MOUSE] 
- UncVtx Chi2<20

vtxana_kf_vtxSelection_cutflow

Entries 194740

Mean 3.478

Std Dev 2.596

no-cuts <4.5GeV
-p e

<25
2χ

 Track
-e

<25
2χ

 Track
+e Track n2d Hits > 7

-e Track n2d Hits > 7

+p Track nSh<5

-e Track nSh<5

+p <20unc
2χ10

20

30

40

50

60

70

80

90

100
310×

Ve
rti

ce
s

vtxana_kf_vtxSelection_cutflow

Entries 194740

Mean 3.478

Std Dev 2.596

vtxana_gbl_vtxSelection_cutflow

Entries 701673

Mean 3.541

Std Dev 2.371

vtxana_gbl_vtxSelection_cutflow

Entries 701673

Mean 3.541

Std Dev 2.371

VTXs with KF Tracks

VTXs with SeedTracker+GBL TracksMANY more tracks 
with SeedTracker,
wrt KF to begin with.
However: we know we have  
lot of lowQuality tracks and duplicates
VtxChi2 cleans them all up.  
I think this is in line with the long
processing time of our standard tracking

18

Some fast checks of tri-trig+beam MC 2019

vtxana_kf_vtxSelection_ele_chi2_h

Entries 15930
Mean 7.761
Std Dev 6.164

0 5 10 15 20 25 30
2χtrack

0

100

200

300

400

500

600

700

800

900

1000

Tr
ac

ks

vtxana_kf_vtxSelection_ele_chi2_h

Entries 15930
Mean 7.761
Std Dev 6.164

vtxana_kf_vtxSelection_pos_chi2_h

Entries 15930
Mean 8.852
Std Dev 6.16

vtxana_kf_vtxSelection_pos_chi2_h

Entries 15930
Mean 8.852
Std Dev 6.16

vtxana_gbl_vtxSelection_ele_chi2_h

Entries 14954
Mean 6.58
Std Dev 6.209

vtxana_gbl_vtxSelection_ele_chi2_h

Entries 14954
Mean 6.58
Std Dev 6.209

vtxana_gbl_vtxSelection_pos_chi2_h

Entries 14954
Mean 8.324
Std Dev 6.01

vtxana_gbl_vtxSelection_pos_chi2_h

Entries 14954
Mean 8.324
Std Dev 6.01

vtxana_kf_vtxSelection_ele_chi2_h

vtxana_kf_vtxSelection_pos_chi2_h

vtxana_gbl_vtxSelection_ele_chi2_h

vtxana_gbl_vtxSelection_pos_chi2_h

vtxana_gbl_vtxSelection_pos_nHits_2d_h

Entries 14954
Mean 10.1
Std Dev 1.675

0 2 4 6 8 10 12 14
2DhitsN

0

2000

4000

6000

8000

10000

12000

Tr
ac

ks

vtxana_gbl_vtxSelection_pos_nHits_2d_h

Entries 14954
Mean 10.1
Std Dev 1.675

vtxana_gbl_vtxSelection_pos_nHits_2d_h

vtxana_gbl_vtxSelection_ele_nHits_2d_h

Entries 14954
Mean 8.941
Std Dev 1.385

vtxana_gbl_vtxSelection_ele_nHits_2d_h

Entries 14954
Mean 8.941
Std Dev 1.385

vtxana_kf_vtxSelection_ele_nHits_2d_h

Entries 15930
Mean 9.568
Std Dev 1.551

vtxana_kf_vtxSelection_ele_nHits_2d_h

Entries 15930
Mean 9.568
Std Dev 1.551

vtxana_kf_vtxSelection_pos_nHits_2d_h

Entries 15930
Mean 10.38
Std Dev 1.717

vtxana_kf_vtxSelection_pos_nHits_2d_h

Entries 15930
Mean 10.38
Std Dev 1.717

vtxana_gbl_vtxSelection_pos_nHits_2d_h

vtxana_gbl_vtxSelection_ele_nHits_2d_h

vtxana_kf_vtxSelection_ele_nHits_2d_h

vtxana_kf_vtxSelection_pos_nHits_2d_h

Should have removed 
those

In red GBL Ele/Pos 
In blue KF Ele/Pos

In red GBL Ele/Pos 
In blue KF Ele/Pos

19

Some fast checks of tri-trig+beam MC 2019

vtxana_gbl_vtxSelection_vtx_InvM_h

Entries 14954

Mean 0.07256

Std Dev 0.03082

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
vtx Mass [GeV]

0

100

200

300

400

500

600

700

800

900

1000

Ve
rti

ce
s

vtxana_gbl_vtxSelection_vtx_InvM_h

Entries 14954

Mean 0.07256

Std Dev 0.03082

vtxana_gbl_vtxSelection_vtx_InvM_h

vtxana_kf_vtxSelection_vtx_InvM_h

Entries 15930

Mean 0.07097

Std Dev 0.03045

vtxana_kf_vtxSelection_vtx_InvM_h

Entries 15930

Mean 0.07097

Std Dev 0.03045

VTX SeedTracker+GBL Tracks

VTX KF Tracks

vtxana_kf_vtxSelection_vtx_Z_svt_h

Entries 15930

Mean 7.213−

Std Dev 2.567

30− 20− 10− 0 10 20 30
vtx Z pos [mm]

500

1000

1500

2000

2500

Ve
rti

ce
s

vtxana_kf_vtxSelection_vtx_Z_svt_h

Entries 15930

Mean 7.213−

Std Dev 2.567

vtxana_gbl_vtxSelection_vtx_Z_svt_h

Entries 14954

Mean 6.714−

Std Dev 6.99

vtxana_gbl_vtxSelection_vtx_Z_svt_h

Entries 14954

Mean 6.714−

Std Dev 6.99

VTX KF Tracks

VTX SeedTracker+GBL Tracks

KF
KF

ST+GBL

ST+GBL

20

Current issues
• BeamEnergy in MC samples remained

set on 2016 value.
• Unfortunate combination of: 

- Old defaults in the reconstruction
database 
- Defaults of the StandardCuts class that
define the cuts in the ReconParticleDriver

• Effect: 
ElectronMomentum < 0.75*2.30 GeV
[facepalm]

•

Log from trident processing

vtxana_gbl_vtxSelection_ele_p_h

Entries 14954
Mean 0.6206
Std Dev 0.3758

0 0.5 1 1.5 2 2.5
 [GeV]-ep

0

200

400

600

800

1000

Tr
ac

ks

vtxana_gbl_vtxSelection_ele_p_h

Entries 14954
Mean 0.6206
Std Dev 0.3758

vtxana_kf_vtxSelection_ele_p_h

Entries 15930
Mean 0.7823
Std Dev 0.347

vtxana_kf_vtxSelection_ele_p_h

Entries 15930
Mean 0.7823
Std Dev 0.347

GBL Ele Track 
KF Ele Track

21

Current issues
• BeamEnergy in MC samples remained

set on 2016 value.
• Unfortunate combination of: 

- Old defaults in the reconstruction
database 
- Defaults of the StandardCuts class that
define the cuts in the ReconParticleDriver

• Effect: 
ElectronMomentum < 0.75*2.30 GeV
[facepalm]

•

Log from trident processing

vtxana_gbl_vtxSelection_ele_p_h

Entries 14954
Mean 0.6206
Std Dev 0.3758

0 0.5 1 1.5 2 2.5
 [GeV]-ep

0

200

400

600

800

1000

Tr
ac

ks

vtxana_gbl_vtxSelection_ele_p_h

Entries 14954
Mean 0.6206
Std Dev 0.3758

vtxana_kf_vtxSelection_ele_p_h

Entries 15930
Mean 0.7823
Std Dev 0.347

vtxana_kf_vtxSelection_ele_p_h

Entries 15930
Mean 0.7823
Std Dev 0.347

GBL Ele Track 
KF Ele Track

Can we fix it?  
- Yes: we just have to rerun the ReconDriver on the LCIOs. 
- Shouldn’t take much as only vertexing is affected, not tracks
When should we fix it? 
- Now, otherwise we can cancel wed session
I’ve prepared an lcsim steering file that “fixes” that. 
- Re-Vertexing steering-file
- Opened an issue to fix DB: iss690

https://github.com/JeffersonLab/hps-java/blob/beamEnergy_fix_iss690/steering-files/src/main/resources/org/hps/steering/recon/PhysicsRun2019MCRecon_fromLCIO_OnlyECalClustersAndVertexing.lcsim
https://github.com/JeffersonLab/hps-java/issues/690

22

BACKUP

23

Open point for discussion - in random order

• (1) Proper solution for Monster Events - DATA  
- We need to fix the SVT Event Filter to remove/skip un-physical events.  
- The current Driver is tuned on 2015 - 2016 studies and need to be fixed for 2019. Current workaround limit of max
200 Clusters/event is arbitrary.

• (2) MCParticle container in the LCIO is huge (found about 3k MC Particles per event in the tri-trig + beam) 
- Need to apply cuts before they arrive in final LCIO files

• (3) Tracking Processing time  
- Current tracking strategy probably not sustainable in 2019 as takes too much processing time 
- KF pattern reco can be an alternative, once validated and when everyone’s happy

• (4) Raw Hit Fitting Time - DATA (and MC?)  
- RawSVTHitFittingTime takes 30% of evio->LCIO step in 2019 Data. Can be partially fixed by (1).  
- Alternatively a 2 step process? 
 - First we perform a EVIO->FHO [FittedHitsOnly]  
 - Hand the FHO for Reconstruction/Alignment/Analysis to people.  
 This will cuts 30% of processing time when we’ll need to process all the data.

• (5) BeamSpot determination from Data  
- BeamSpot info as free parameter are dangerous if BS moves [2016 vex had to recompute it at analysis level]

• (6) Start an event skimming campaign 
- A non-negligible amount of events do not even have tracks in them leading to slow processing. 
- Trigger-wise or basic skimming should be done to ensure we don’t spend too much time running on useless data.
Better earlier than later.

• (7) Keep track of processing commands 
- Data we process is often private made with private steering files. We should keep track of what we did in the case
of a larger official production.

24

BACKUP

• (4) Raw Hit Fitting Time  
- RawSVTHitFittingTime takes 30% of evio->LCIO step in 2019 Data. Can be partially fixed by (1).  
- A possible compromise while we develop a faster fitting machinery is to reconstruct data in 2 steps: 
 - First we perform a EVIO->FHO on the files we want/need [FittedHitsOnly LCIO files] and could start
basically today.  
 - Use the FHO for Reconstruction/Alignment/Analysis. This will cuts 30% of processing time when we’ll
need to process all the data.  
- If eventually we get to change fitting we can restart the chain 
- Not directly LCIO as quite slow at the moment and LCIO ntuples content might will change soon.

• (5) BeamSpot determination from Data  
- BeamSpot info as free parameter are dangerous if BS moves [2016 vex had to recompute it at analysis
level] 
- Propose to do a double processing: x-process and f-process 
- x-process to compute BS information (position/sigma) and store in DB, then f-process for proper correct
event-by-event BS/Target constraint.

25

jProfiler on tri-trig without beam bkg

26

jProfiler on tri-trig without beam bkg

27

jProfiler on tri-trig with beam bkg

28

jProfiler on tri-trig with beam bkg - rmsTimeCut = 20

29

hps-java master issues when running on data

• Monster Events: 
- Order of ~% of the events have a
huge amount of hits confusing the
Track Finding stage

• These event are impossible to
process (some lead to more than
10^3-10^4 trackCandidates)

• Current solution 
- Added protection in
TrackerHitDriver for SiClusters >
200 [temporary] 
- Added configurable protection on
size of SiClusters in
KalmanPatDriver (Same solution
of the SeedTracker)

30

Resonance Search Statistics Support

