Status and Cut Flow for 2016 Vertexing Analysis

Matt Solt
SLAC National Accelerator Laboratory
HPS Analysis Workshop 2020
January 21, 2020

Introduction

SLAC

- This talk:
 - Preliminary cutflow and cuts to be explored
 - Isolation cut/bad hits discussion
- At this workshop:
 - Tail Fits + Zcuts (data, tritrig-wab-beam)
 - Mass Resolution
 - Acceptance
 - Intro to ML approach
 - Reach projections
 - Plans for limit setting
- Detailed Plots:

https://confluence.slac.stanford.edu/display/hpsg/Analysis+Workshop+20 20

Update on Large MC Samples and Documentation

SLAC

- Tritrig-wab-beam 100% sample
 - 22/30 Complete
 - Showing results from 20/30 tritrig-wab-beam sample
- Tritrig x3 sample
 - Complete
- Documentation we are behind (to be discussed tomorrow)
- Plots shown in this talk are 10% of data and ¾ * 100% tritrig-wab-beam

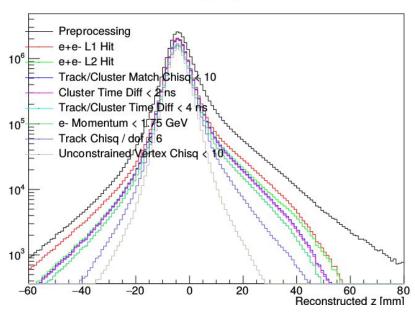
Cut Flow - Preprocessing Cuts

- Preprocessing cuts (i.e. MOUSE cuts)
- Track Chisq/dof < 6 for MC

Cut Description	Requirement
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 2.5 \text{ ns}$
e^+ Track-Cluster Time Difference	$ t_{e^+Track} - t_{e^+Cluster} - 55 < 10$ ns
e^- Track-Cluster Time Difference	$ t_{e^-Track} - t_{e^-Cluster} - 55 < 10$ ns
Ecal clusters in opposite volumes	$y_{e^+ \; { m Cluster}} imes y_{e^- \; { m Cluster}} < 0$
Loose track-cluster match	$\chi^{2} < 15$
Beam electron cut	$p(e^-) < 2.15 \; GeV$
Track Quality	$\chi^2/dof < 12$
Maximum Vertex Momentum	$V_{0p} < 2.8 \; GeV$

Table 2: Requirements applied to V_0 particles during the reconstruction stage for data (i.e. MOUSE cuts).

Cut Flow - Preselection Cuts



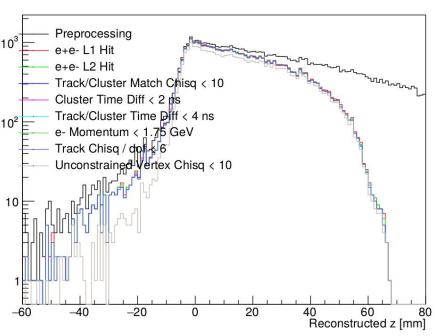
- Essentially tighter MOUSE cuts
- Unlikely to loosen

Cut Description	Requirement
Layer 1 Requirement	e^+ and e^- have L1 hit
Layer 2 Requirement	e^+ and e^- have L2 hit
Track-cluster match	$\chi^{2} < 10$
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 2 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^+Track} - t_{e^+Cluster} - \text{ offset} < 4 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^- Track} - t_{e^- Cluster} - \text{ offset} < 4 \text{ ns}$
Beam electron cut	$p(e^-) < 1.75 \; GeV$
Track Quality	$\chi^2/dof < 6$
Vertex Quality	$\chi_{unc}^{2} < 10$

Table 4: Requirements applied to V_0 after reconstruction as an initial set to study. To offset for data is 56 ns and the time offset for MC is 43 ns.

Reconstructed z [mm] Data Inclusive

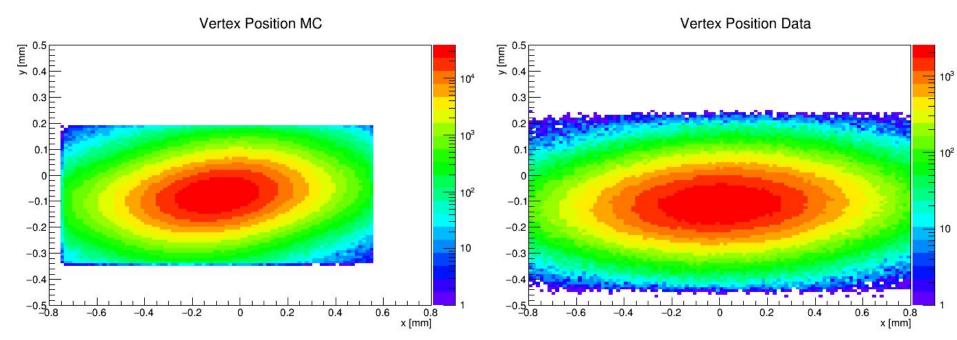
Cut Flow - Preselection Cuts



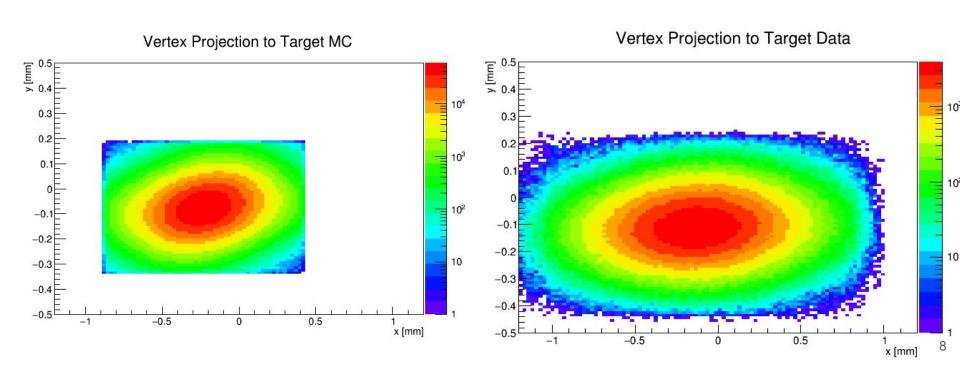
(See more detailed cutflow plots)

Cut Description	Requirement
Layer 1 Requirement	e^+ and e^- have L1 hit
Layer 2 Requirement	e^+ and e^- have L2 hit
Track-cluster match	$\chi^{2} < 10$
Cluster Time Difference	$ t_{e^+Cluster} - t_{e^-Cluster} < 2 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^+Track} - t_{e^+Cluster} - \text{ offset} < 4 \text{ ns}$
Track-Cluster Time Difference	$ t_{e^-Track} - t_{e^-Cluster} - \text{ offset} < 4 \text{ ns}$
Beam electron cut	$p(e^-) < 1.75~{\sf GeV}$
Track Quality	$\chi^2/dof < 6$
Vertex Quality	$\chi_{unc}^{2} < 10$

Table 4: Requirements applied to V_0 after reconstruction as an initial set to study. offset for data is 56 ns and the time offset for MC is 43 ns.


Reconstructed z [mm] MC Inclusive

Cut Flow - V0 Position Cut


- Rectangular cut on vertex x/y position fitted 3σ (data run-dependent).
- We should do an elliptical cut. How tight?

Cut Flow - V0 Projection Cut

- Rectangular cut on vertex x/y projection fitted 3σ (data run-dependent).
- Need to do an elliptical cut (like we did for 2015 vertexing analysis)

Cut Flow - Tight Cuts

SLAC

- These cuts are still being explored
- Other cuts to be explored bscChisq, impact parameters (Z0), VZ errors
- After this, select only events with single V0s to study (will choose the "best" V0 later)

Cut Description	Requirement
Tight Vertex Quality	$\chi^2_{unc} < 4$
Radiative Cut	$V_{0p}>0.8~e_{beam}~{\sf GeV}$
Maximum Vertex Momentum	$V_{0p} < 1.15 \ e_{beam} \ {\sf GeV}$
V0 projection to target	Fitted 3σ cut
V0 x and y position	Fitted 3σ cut
Isolation Cut	$\delta + \frac{1}{2}(z0 + z_{targ} \frac{P_Y}{P} \operatorname{sign}(P_Y)) > 0$

Reconstructed z [mm] Data Inclusive

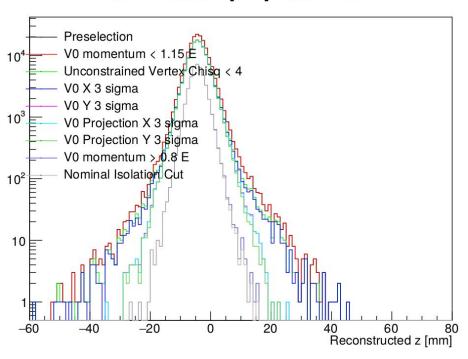
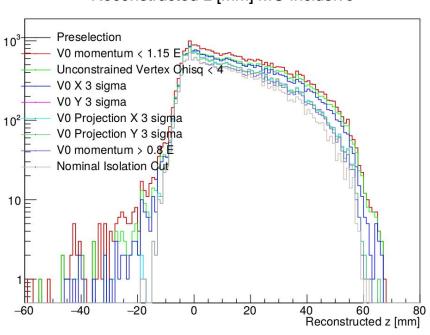


Table 5: Cuts currently being studied.

Cut Flow - Tight Cuts


(See more detailed cutflow plots)

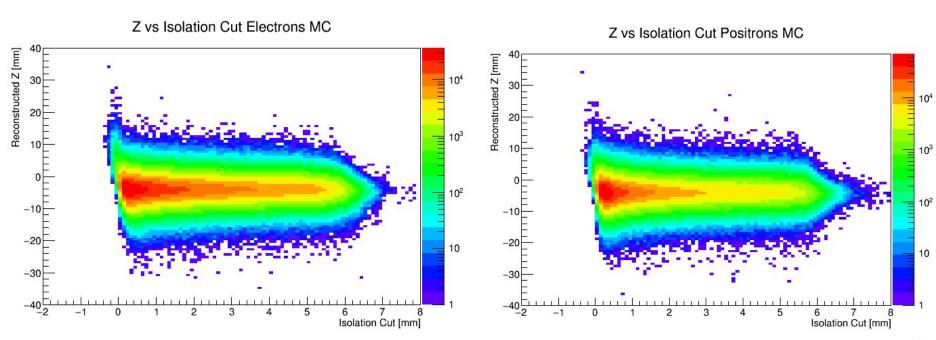
Cut Description	Requirement
Tight Vertex Quality	$\chi^2_{unc} < 4$
Radiative Cut	$V_{0p} > 0.8 \ e_{beam} \ GeV$
Maximum Vertex Momentum	$V_{0p} < 1.15 \; e_{beam} \; {\sf GeV}$
V0 projection to target	Fitted 3σ cut
V0 x and y position	Fitted 3σ cut
Isolation Cut	$\delta + \frac{1}{2}(z0 + z_{targ} \frac{P_Y}{P} \operatorname{sign}(P_Y)) > 0$

Table 5: Cuts currently being studied.

- TODO: add numbers to these cuts
- Look at High Z plots

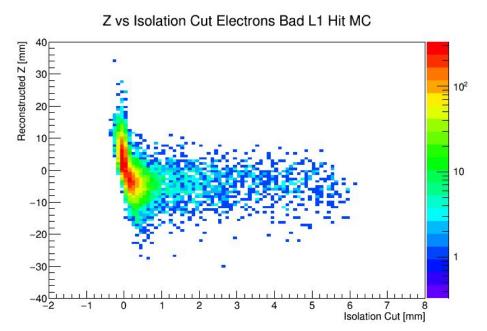
Reconstructed z [mm] MC Inclusive

Bad Hits



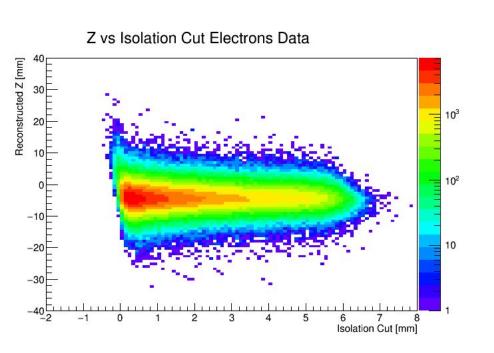
- Strategy for this analysis
 - Tighten up the isolation cut (see next slides for plots)
- I have previous work on refitting tracks/vertices for bad hits
 - This was useful to do. I learned a lot, for instance many bad hits come from FEEs
 - I will make these refit plots and include them in my thesis
 - Practically, this will probably be too complicated for this analysis (we have to run some reconstruction on the data to make use of it)

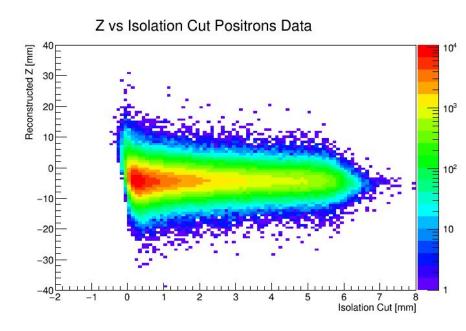
Isolation Cut MC


Tight cuts without the isolations cut for MC

Isolation Cut MC L1 Bad Hit

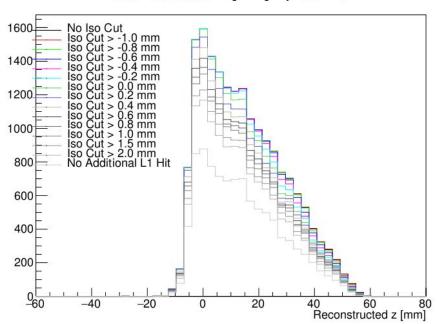
- Tight cuts without the isolations cut for MC
- Select only tracks with a bad hit in L1



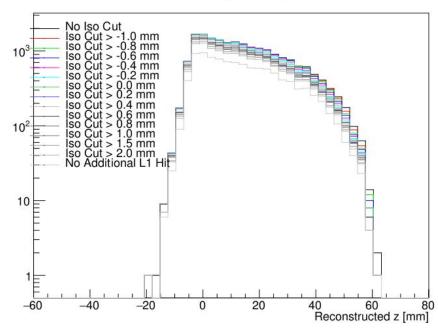

Z vs Isolation Cut Positrons Bad L1 Hit MC Reconstructed Z [mm] 10 Isolation Cut [mm]

Isolation Cut Data

Tight cuts without the isolations cut for Data



Isolation Cut A' MC



Isolation cut efficiency for A' 100 MeV MC

Reconstructed z [mm] Ap 95 MeV

Reconstructed z [mm] Ap 100 MeV

