Axion and Hidden Photon Production Mechanisms

Peter W. Graham

Misalignment Production: "Pre-Inflationary Scenario"

PQ symmetry broken already during inflation (high f_a)

Nonthermal DM production mechanism:

- during high-scale inflation axion potential is off
- after inflation axion field begins with some value in our Hubble patch

- around QCD phase transition axion potential turns on
- axion begins to oscillate + spatial gradients (momentum) low from inflation \rightarrow axion is cold DM
- abundance is right for DM if $m_a \sim 10^{-5} \,\mathrm{eV}$ and $\theta_{\mathrm{in}} \sim \frac{a_{\mathrm{in}}}{f_a} \sim 1$
- for lower masses require smaller θ_{in} to avoid "overclosure", often called lower bound on axion mass, in fact only a very mild "accident": $\theta_{in} \sim \sqrt{\frac{m_a}{10^{-5} \,\mathrm{eV}}}$

light fields naturally produced non-thermally in large abundance

"Post-Inflationary Scenario"

PQ symmetry breaks after inflation

- before PQ breaks axion field value not determined yet
- PQ symmetry breaks after inflation
 → axion field initially distributed over entire range

- around QCD phase transition potential turns on and axion begins to oscillate
- form axion strings, hard to calculate exact contribution to abundance
- abundance is right for DM at only a single value of axion mass ~ few GHz (large theory "error" due to QCD, strings)
- may form small-scale structure (minihalos, miniclusters, axion stars...), hard to calculate. Uncertain
 how much of the axion DM tied up in these from none to almost all of it
- note if almost all tied up in clumps \rightarrow drastic effect on direct detection experiments

Mass Ranges

Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser

The Stochastic Axion Scenario

PWG & A. Scherlis PRD **98** (2018) arXiv:1805.07362 Takahashi, Yin, & Guth PRD **98** (2018) arXiv:1805.08763

A New Origin for QCD Axion Dark Matter

During high-scale inflation axion is fixed \rightarrow "misalignment production"

but in low-scale inflation, axion will damp

- axion potential is on
- Hubble friction is low enough

but axion also spreads ("hops") from quantum fluctuations

competition between wavepacket spreading and potential → axion tends toward an equilibrium (vacuum state) independent of initial conditions!

The Stochastic Axion Scenario PWG & Scherlis PRD 98 (2018) arXiv:1805.07362

a new production mechanism which strongly motivates searching entire axion mass range

avoids isocurvature bounds even though produced from quantum fluctuations

many other cosmological scenarios also produce QCD axion DM of any mass

Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser

Results: Reheating

All of this is irrelevant if temperature hits f_a during

- **1**. Inflation: $T_{dS} \sim H_I$
- 2. Reheating: $T_{rh} \sim \epsilon_{eff} \sqrt{m_P H_I}$

Inefficient reheating: $T_{dS} > T_{rh}$ at high H_I

Note: $T_{rh} \gg \text{TeV}$ unless extremely inefficient.

Hidden Photons

Naturally produced during inflation: to get all of DM need a mass ~ GHz (could be lower and some subdominant fraction of DM) PWG, J. Mardon, & S. Rajendran 1504.02102

Production from a scalar gives any light mass

Dror, Harigaya & Narayan 1810.07195 Co, Pierce, Zhang & Zhao 1810.07196

Inflationary Production of Massive Vector

PWG, J. Mardon, & S. Rajendran 1504.02102

INFLATIONARY VECTOR PRODUCTION

Free massive vector field:

$$\mathcal{L} \sim F'^2 + m^2 A'^2$$

Inflation $\rightarrow O(H_I)$ field fluctuations \rightarrow classical abundance

redshifting \rightarrow cold matter today

Jeremy Mardon, SITP, Stanford

scalar: scale-invariant on long scales \longrightarrow isocurvature problem vector: suppressed power on long scales \longrightarrow NO isocurvature problem Abundance set by H_I and m:

$$\frac{\Omega_A}{\Omega_{\rm cdm}} \approx \sqrt{\frac{m}{6 \times 10^{-6} \, {\rm eV}}} \left(\frac{H_I}{10^{14} \, {\rm GeV}}\right)^2$$

Primordial fluctuations (pre m.r.e.)

Self-bound clumps (post m.r.e.)

Hidden Photons

Clumping Implication for Searches?

- Large small-scale clumping is a general possibility
- ρ in lab varies over time
- $\rho \longrightarrow \sim 10^6 \rho$ when in clump (or more?)
- \longrightarrow signal is HUGE and easy to see...

... IF at right frequency

• Best strategy: scan range fast and repeat (maximizes chance of hitting frequency when in clump)?

Backup Slides

A New Origin for QCD Axion Dark Matter

PWG & Scherlis (2018); Guth, Takahashi, Yin (2018)

But in lower scale inflation, axion potential is on during inflation

 \rightarrow zero is a preferred point for axion

Fokker-Planck:
$$\dot{\rho}(a,t) = \frac{1}{3H} \partial_a \left(V'(a) \rho(a,t) \right) + \frac{H^2}{8\pi^2} \partial_{aa}^2 \rho(a,t)$$

naturally gives small $\theta_{in} \rightarrow$ easily gives correct DM abundance

independent of initial conditions

"Field" Dark Matter

particle DM

DM at long deBroglie wavelength useful to picture as a "coherent" field:

signal frequency = DM mass = m

spread by DM kinetic energy $\sim mv^2$

galactic virial velocity $v \sim 10^{-3}$ \rightarrow line width $\sim 10^{-6}m$

 \rightarrow coherence time, $Q \sim 10^6$ periods

The Axion

One of the best-motivated dark matter candidates \rightarrow how do we discover it?

Allowed couplings to SM: E&M - drive currents $\frac{a}{f}F\tilde{F}$ QCD - change nuclear properties $\frac{\partial_{\mu}a}{f}G\tilde{G}$ spin - cause precession $\frac{\partial_{\mu}a}{f}\bar{\psi}\gamma^{\mu}\gamma_5\psi$

scalar - new force/SM properties (relaxion solves hierarchy problem)

Ultralight Dark Matter Detection

Cover entire QCD axion

+ broad general axion (& dark photon) parameter space ~20 orders of magnitude in mass likely more good ideas out there!

Axion Dark Matter Detection with the CMB

with

Michael Fedderke Surjeet Rajendran

PRD **100** (2019)

Polarization Rotation and the CMB

potentially many observable effects, in lab and from astrophysical sources

CMB Sensitivity to Axion Dark Matter

AC oscillation most sensitive but requires dedicated analysis of existing data if observed, easy to verify with another CMB experiment (and certainly not cosmological)