Geant4 10.6 beta

Choosing a Physics List

Geant4 Tutorial at Chalk River Dennis Wright (SLAC) 30 August 2019

Outline

- Review
 - Physics lists, reference physics lists, naming convention
- Some application-based recommendations
- Using validation to choose your physics list
 - Example

Physics List

- An object responsible for:
 - specifying all particles to be used in a simulation application
 - specifying physics processes and assigning them to each particle type
- One of three mandatory objects that the user must provide to the G4RunManager in any application
 - tells run manager what physics needs to be invoked and when
- Provides a very flexible way to set up the physics environment
 - user can choose and specify particles he wants
 - user can choose the physics (processes) to assign to each particle
- BUT, user must have a good understanding of the physics required to describe the problem
 - omission of relevant particles and/or physics interactions could lead to poor modeling results

Reference Physics Lists

- Also called "Production Physics Lists"
 - used by larger groups like ATLAS, CMS, etc.
 - well-maintained and tested
 - very stable: not often changed and usually updated only for bug fixes
 - extensively validated inside and outside of Geant4
 - FTFP_BERT, QGSP_BERT, QGSP_FTFP_BERT_EMV, FTFP_BERT_HP, QGSP_BIC_EMY, QGSP_BIC_HP, QBBC, Shielding
- Caveats:
 - these are provided as a "best guess" of the physics needed in certain use cases
 - intended as templates or starting points
 - if you decide to use them, you are responsible for validating them for your application
 - this may mean adding or removing physics or changing settings

Reference Physics List Naming Convention

• Hadronic options

- "QGS" Quark Gluon String model (>~ 15 GeV)
- "FTF" FRITIOF String Model (>~ 5 GeV)
- "BIC" Binary Cascade model (<~ 10 GeV)
- "BERT" Bertini Cascade model (<~ 15 GeV)
- "P" G4Precompound model used for de-excitation
- "HP" High precision particle (neutrons and some charged particles (<~ 20 MeV)

• Electromagnetic options

- no suffix: standard EM (default G4EmStandardPhysics constructor)
- "EMV" G4EmStandardPhysics_option1 (fast, less precise)
- "EMY" G4EmStandardPhysics_option3 (precise, used for medical and space)
- "EMZ" G4EmStandardPhysics_option4 (most precise, slower)
- Name decoding: String_Cascade_Neutron_EM
- Complete list of pre-packaged physics lists (with detailed descriptions) at
 - <u>http://geant4-userdoc.web.cern.ch/geant4-</u> <u>userdoc/UsersGuides/Physi</u>csListGuide/html/index.html

Recommended Physics Lists for Some Applications

• FTFP_BERT

- HEP applications
- FRITIOF string + Precompound deexcitation + Bertini cascade + standard EM
- can add _HP if neutron flux is important
- Shielding
 - for shielding and space applications
 - very similar to FTFP_BERT_HP, but with better ion-ion interactions

• QGSP_BIC_HP

- medical applications
- Quark Gluon String + FRITIOF + Precompound + Binary cascade + high precision neutron + standard EM
- can add best precision EM by appending "EMZ"

Changing the EM Physics in a Reference Physics List

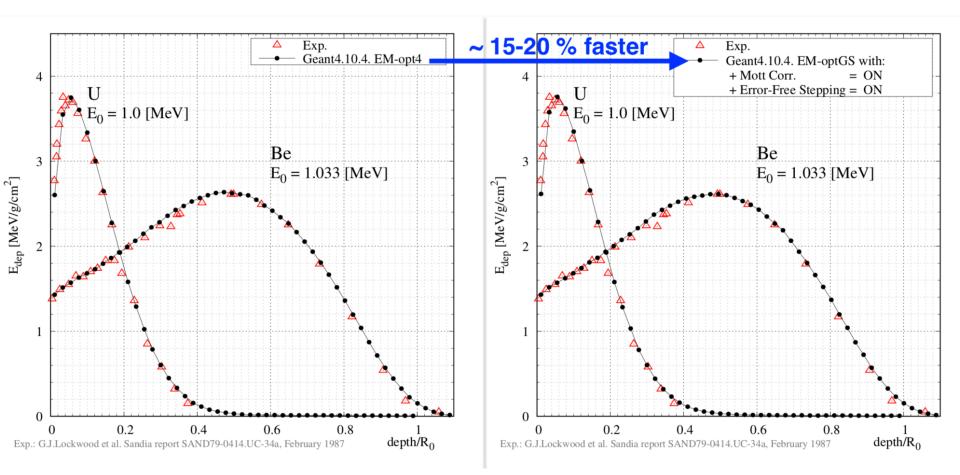
• QGSP_BIC_HP_EMZ

- QGSP_BIC_HP is a reference physics list with standard EM
- you can change this by using the G4PhysListFactory
 - knows all available reference physics lists and makes EM substitutions easy

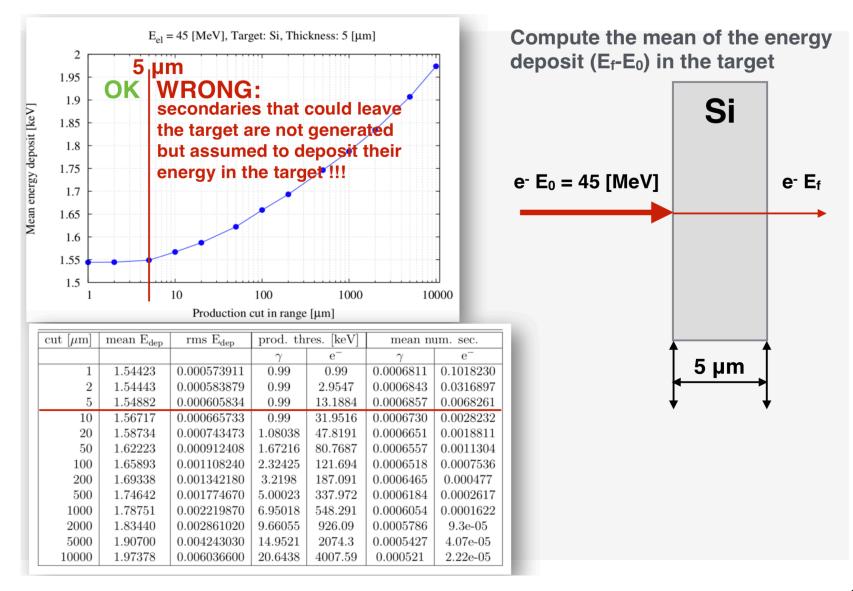
```
// IM YOUR MAIN APPLICATION
212
213
214
215
     #ifdef G4MULTITHREADED
216
        G4MTRunManager + runManager = new G4MTRunManager;
217
       // number of threads can be defined via macro command
218
        runManager->SetNumberOfThreads(4);
219
      #else
220
        G4RunManager* runManager = new G4RunManager;
221
222
223
224
       // everything about the available reference physics lists
225
       // and can replace their default EM option
226
       G4PhysListFactory physListFactory;
227
       // obtain the QGSP_BIC_HP_EMZ reference physics lists
228
       // which is the QGSP BIC HP refrence list with opt4 EM
229
       const G4String plName = "QGSP_BIC_HP_EMZ";
        G4VModularPhysicsList* pList = physListFactory.GetReferencePhysList(plName);
230
231
       // (check that pList is not nullptr, that I skipp now)
232
       // register your physics list in the run manager
233
        runManager->SetUserInitialization(pList);
234
        // register further mandatory objects i.e. Detector and Primary-generator
235
        . . .
```

Choosing Your Physics List

- Ideally, user has a good understanding of the physics relevant to a given application
 - user can then build his own or decide on a pre-built one
 - in either case the physics list must be validated for the application
 - during the validation, some changes to the physics list may be required
- If your application fits within a well-defined area (e.g. medical)
 - used may choose a physics list used in that area as a starting point
 - validation, once again, is required
- Procedure that always works, but is time-consuming
 - start with most accurate physics (e.g. EMZ for EM)
 - run the simulation with lower statistics to obtain the most accurate result
 - if desired, choose a less accurate, but faster, physics list and run some more simulation statistics
 - modify in a granular way the first physics list using the most accurate results as a guide


Validation

- Physics list must always be chosen based on how well its components perform in your specific case
 - always balance physics accuracy with CPU performance
- Geant4 provides validation (comparison to data) for most of its physics codes
 - validation is a continuing task
 - performed at least with each release
 - more validations added with time
- Access these comparisons at the Geant4 website:
 - https://geant4.web.cer.ch
 - Click: Validation of Geant4
 - Choose Validation and Testing from the menu
 - today we'll look at the Geant4 GRID-based testing results portal


Validation Example

- Simulating (EM) depth dose profile
 - energy deposit by energetic electrons as a function of penetration depth in both lighter and heavier materials
 - use Geant4 validation results from the Geant4 GRID-based testing results portal, especially test37, to choose an initial physics list
 - then adjust initial reference physics list to achieve maximum physics performance while improving computational efficiency

Validation Example

And Always Check the Production Threshold

