
Version 10.5

Multithreading I

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

• Introduction
• Multithreading in Geant4 : the basics
• UI commands for multithreading

Multithreading I - M. Asai (SLAC) 2

Version 10.5

Introduction

The challenges of many-core era

• Increase frequency of CPU
causes increase of power
consumption

• Reached plateau around 2005
• No more increase in CPU frequency
• However number of transistors

/$ you can buy continues to
grow

• Multi/Many-core era
• Note: quantity memory you can

buy with same $ scales slower
• Expect:
• Many core (double/2yrs?)
• Single core performance will not

increase as before
• Less memory/core
• New software models need to

take these into account: increase
parallelism

4

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?
DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.
CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term
Years, p. 167. ;
Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”

Multithreading I - M. Asai (SLAC) 4

In Brief

•Modern CPU architectures: need to introduce parallelism
•Memory and its access will limit number of concurrent
processes running on single chip
•Solution: add parallelism in the application code

•Geant4 needs back-compatibility with user code and simple
approach (physicists != computer scientists)
•Events are independent: each event can be simulated separately
•Multi-threading for event level parallelism is the natural choice

5
Multithreading I - M. Asai (SLAC) 5

Geant4 Multi Threading capabilities

6
Multithreading I - M. Asai (SLAC) 6

What is a thread?

7
Multithreading I - M. Asai (SLAC) 7

What is a thread?

8
Multithreading I - M. Asai (SLAC) 8

What is a thread?

9
Multithreading I - M. Asai (SLAC) 9

What is a thread?

10
Multithreading I - M. Asai (SLAC) 10

Version 10.5

Multi-threading in Geant4: the basics

General Design

12
Multithreading I - M. Asai (SLAC) 12

Simplified Master / Worker Model

•A G4 (with MT) application can be seen as simple finite state machine

13
Multithreading I - M. Asai (SLAC) 13

Simplified Master / Worker Model

•A G4 (with MT) application can be seen as simple finite state machine
•Threads do not exists before first /run/beamOn
•When master starts the first run spawns threads and distribute work

14

Master
Worker

Multithreading I - M. Asai (SLAC) 14

Shared Vs Thread-local

•To reduce memory footprint threads must share at least part
of the objects

•General rule in G4: threads can share whatever is invariant
during the event loop (e.g. threads do not change these
objects while processing events, these are used “read-only”)
- Geometry definition
- Electromagnetic physics tables

15
Multithreading I - M. Asai (SLAC) 15

Shared ? Private?

• Shared by all threads
: stable during the event loop
– Geometry
– Particle definition
– Cross-section tables
– User-initialization classes

• Thread-local
: dynamically changing for every
event/track/step
– All transient objects such as run,

event, track, step, trajectory, hit, etc.
– Physics processes
– Sensitive detectors
– User-action classes

• In the multi-threaded mode, generally saying, data that are stable
during the event loop are shared among threads while data that are
transient during the event loop are thread-local.

Multithreading I - M. Asai (SLAC) 16

Detector geometry &
cross-section tables MEMORY SPACE

Transient per event
data (tracks, hits, etc.)

Active cores Unused cores

AVAILABLE CORES

MEMORY SPACE

Active cores

AVAILABLE CORES

W
ith

ou
t M

T

W
ith

 M
T

17Multithreading I - M. Asai (SLAC)

Multithreading I - M. Asai (SLAC)

Memory consumption on Intel Xeon Phi

18
Intel Xeon Phi™ 3120A

Scalability on Intel Xeon Phi

Multithreading I - M. Asai (SLAC) 19

Physical
cores
only

First hyper-
threading

Second
hyper-
threading

Third
hyper-
threading

Intel Xeon Phi™ 3120A

Shared ? Thread-local?

• In general, geometry and physics tables are shared, while event, track,
step, trajectory, hits, etc., as well as several Geant4 manager classes such
as EevntManager, TrackingManager, SteppingManager,
TransportationManager, FieldManager, Navigator,
SensitiveDetectorManager, etc. are thread-local.

• Among the user classes, user initialization classes
(G4VUserDetectorConstruction, G4VUserPhysicsList and newly
introduced G4VUserActionInitialization) are shared, while all user action
classes and sensitive detector classes are thread-local.
– It is not straightforward (and thus not recommended) to access from

a shared class object to a thread-local object, e.g. from detector
construction to stepping action.

– Please note that thread-local objects are instantiated and initialized at
the first BeamOn.

• To avoid potential errors, it is advised to always keep in mind which class
is shared and which class is thread-local.

Multithreading I - M. Asai (SLAC) 20

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Multithreading I - M. Asai (SLAC) 21

Multi-threaded mode

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

Multithreading I - M. Asai (SLAC) 22

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

Multithreading I - M. Asai (SLAC) 23

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserPrimary
GeneratorAction

UserStackingAction

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserStackingAction

main()

G4MTRunManager UserRunAction

Worker thread #1 Worker thread #2

Master thread

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserStackingAction

Worker thread #0

Multi-threaded mode

UserPrimary
GeneratorAction

UserPrimary
GeneratorAction

Multithreading I - M. Asai (SLAC) 24

Version 10.5

UI commands for multithreading

Number of worker threads

• You can specify the number of worker threads.
– They do not include master thread or visualization thread.

• Shell environment variable G4FORCENUMBEROFTHREADS. This will overwrite the
following alternative settings. G4FORCENUMBEROFTHREADS can be an integer or a
keyword "max". If "max" is specified, Geant4 uses all threads of the machine including
all hyper threads.

• UI command /run/numberOfThreads, /run/useMaximumLogicalCores
– This UI command has to be issued at PreInit> state.

• G4RunManager::SetNumberOfThreads(G4int)
– This method must be invoked prior to G4RunManager::Initialize().

• UI command /run/pinAffinity
– Locks worker threads to specific logical cores.

Multithreading I - M. Asai (SLAC) 26

/run/eventModulo <N> <seedOnce>

• Set the event modulo for dispatching events to worker threads
– Each worker thread is tasked to simulate <N> events and then comes back to

G4MTRunManager for next set.
• If it is set to zero (default value), N is roughly given by this.

– N = int(sqrt(number_of_events / number_of_threads))
• The value N may affect on the computing performance in particular, if N is too small

compared to the total number of events.
• The second parameter <seedOnce> specifies how frequent each worker thread is

seeded by the random number sequence centrally managed by the master
G4MTRunManager.
– If <seedOnce> is set to 0 (default), seeds that are centrally managed by

G4MTRunManager are set for every event of every worker thread. This option
guarantees event reproducibility regardless of number of threads.

– If <seedOnce> is set to 1, seeds are set only once for the first event of each run of
each worker thread. Event reproducibility is guaranteed only if the same number of
worker threads are used. On the other hand, this option offers better computing
performance in particular for applications with relatively small primary particle
energy and large number of events.

Multithreading I - M. Asai (SLAC) 27

UI commands for cout/cerr

• /control/cout/useBuffer <flag>
– Store G4cout and/or G4cerr stream to a buffer so that output of each thread is grouped.
– The buffered text will be printed out on a screen for each thread at a time at the end of

the job or at the time the user changes the destination to a file.
• /control/cout/ignoreThreadsExcept <threadID>

– Omit output from threads except the one from the specified thread.
– If threadID is greater than the actual number of threads, no output is shown from

worker threads.
– To reset, use -1 as threadID.

• /control/cout/prefixString <prefix>
– In case G4cout and/or G4cerr are not buffered, output of all threads are displayed on

the screen simultaneously.
– With this command, the user may specify a prefix for each output line which is

supplemented by the thread ID. By default it is “G4MT”
• /control/cout/setCoutFile <fileName> <ifAppend>

/control/cout/setCerrFile <fileName> <ifAppend>
– Send G4cout/G4cerr stream to a file dedicated to each thread. The file name has

"G4W_n_" prefix where n represents the thread ID.
– File name may be changed for each run. If ifAppend parameter is false, the file is

overwritten when exactly the same file has already existed.
– To change the G4cout/G4cerr destination back to the screen, specify the special

keyword "**Screen**" as the file name.

Multithreading I - M. Asai (SLAC) 28

