Geant4 10.6 beta

Electromagnetic Physics I

Geant4 Tutorial at Chalk River Dennis Wright (SLAC) slides based on those of Mihaly Novak (CERN) 28 August 2019

Outline

- Electromagnetic (EM) physics overview
 - Introduction, structure of Geant4 EM physics
 - Standard EM physics constructors
 - How to extract EM physics related quantities
- Special EM topics:
 - EM models per region
 - Atomic de-excitation
 - Energy loss fluctuation
 - Multiple Coulomb scattering
- Where to find help

Code Location: source/processes/electromagnetic/

- /standard
 - γ, e⁺⁻ up to 100 TeV
 - hadrons up to 100 TeV
 - ions up to 100 TeV
- /muons
 - up to 1 PeV
 - energy loss propagator
- /xrays
 - Cerenkov, transition, synchrotron radiation
- /highenergy
 - e.g. γ to $\mu^+\,\mu^-$ pairs, e^+ e^- to $\pi^+\,\pi^-$
- /polarisation
 - models, processes for polarized beams
- /utils
 - model/process interfaces, utilities

/lowenergy

- Livermore library: γ , e⁻ [10 eV 1 GeV]
- Penelope models (2008): γ , e⁺⁻ , [100 eV 1 GeV]
- Livermore polarized processes
- hadrons and ions up to 1 GeV
- atomic de-excitation (Auger, fluor.)
- /dna
 - DNA models, processes (0.025 eV to 10 MeV)
 - microdosimetry models for radiology
 - many models are material-specific (water)
- /adjoint
 - reverse Monte Carlo
 - very fast, limited applications

Standard EM Interactions

• Photon (γ) :

- conversion to e⁻ e⁺ pairs
- Compton (incoherent) scattering
- photo-electric effect
- Rayleigh (coherent) scattering
- photo-nuclear interaction (see hadronic)
- Electron and positron interactions :
 - ionization
 - Coulomb (elastic) scattering
 - bremsstrahlung photon emission
 - positron annihilation
 - electron- and positron-nuclear interactions (see hadronic)

Standard EM Interactions

• Example of photon interactions (from log file)

phot: for gamma SubType= 12	BuildTab	ole= 0		:
Lampaarrime table from 200 k	eV to 100) TeV in 61	bins	
===== FM models for the G4Re	aion Def	aul+Region	ForTheWorld	2 elastic
LivermonePhElectric : Emin-		Emay_	100 ToV	Angulan
	0 ev	Emux=	TOO LEA	Angulur
compt: for gamma SubType-13	BuildTe	ble 1		$\frac{1}{-F_{\ell}P_{\ell}(c)}$
Compt. For gamma Subrype 19	1 May 7	lole- 1	de e e de la en la	1
Lambaa table from 100 ev to	I Mev, /	bins per	aecaae, spli	ine: 1
LambdaPrime table from 1 MeV	to 100 T	eV in 56 b	ins	1
===== EM models for the G4Re	gion Def	aultRegion	ForTheWorld	
Klein-Nishina : Emin=	0 eV	Emax=	100 TeV	1
conv: for camma SubType 14	Rui 1 dTak	le_ 1		1
conv. For gamma SubType= 14		10 him	non docado	coline.
		v, 10 Dins	per decade	, spline:
===== EM models for the G4Re	gion Def	aultRegion	ForTheWorLd	
BetheHeitler : Emin=	0 eV	Emax=	80 GeV	Angular
BetheHeitlerLPM : Emin=	80 GeV	Emax=	100 TeV	Angular
Rayl: for a mma SubType= 11	BuildTak	le= 1		n)! ' '
hayt. For gamma Subrype II		7 hins no	n docado cu	line, 0
Lambda table from 100 ev to	100 Kev,	7 bins pe	r aecaae, sp	bline: 0
LambdaPrime table from 100 k	eV to 100	TeV in 63	bins	1 an the 0
===== EM models for the G4Re	gion Def	aultRegion	ForTheWorld	
LivermoreRayleigh : Emin=	0 eV	Emax=	100 TeV	CullenGe

Structure of Geant4 EM Physics

- Uniform, coherent design approach covering EM sections
 - standard and low-energy EM models/processes can be combined
- Physical interactions described by processes (e.g. G4ComptonScattering)
 - assigned to a particle in the physics list (G4ComptonScattering assigned to photon)
- Processes categorized by their interfaces:
 - G4VEmProcess for discrete EM processes like Compton
 - G4VEnergyLossProcess for continuous-discrete ionization and bremsstrahlung
 - G4VMultipleScattering for the condensed history description of multiple Coulomb scattering (along a given step)
- A given EM process can be described by one or more models:
 - an EM model can handle the interaction in a given energy range
 - naming convention: G4ModelNameProcessNameModel (e.g. G4KleinNishinaComptonModel describes Compton scattering of photons as implemented by the Klein-Nishina differential cross section
 - each EM model follows the G4VEmModel interface:
 - computation of interaction cross section (and stopping power, if any)
 - computation/generation of the interaction final state (kinematics, secondaries, etc.)

Standard EM Example

Gamma conversion process described by two EM models

phot:	for gamma LambdaPrime	a SubType= 1 table from 200	L2 BuildTab keV to 100	le= 0 TeV in 61	bins ForTheWorld	:] 2 elastic interactio
Live	rmorePhElectr	ic : Emin=	0 eV	Emax=	100 TeV	AngularGenSauter
compt	: for gamm Lambda table	na SubType= e from 100 eV table from 1 N	13 BuildTa to 1 MeV, 7	ble= 1 bins per	decade, spli	$\frac{1}{F_{\ell}P_{\ell}(\cos(\theta_1))}$
	Edinbuder Line ===== EM mod Klein-Nishi	dels for the G4 ina : Emin=	Region Def 0 eV	aultRegion Emax=	ForTheWorld 100 TeV	$\left(\frac{1}{2}\right)^{l}$ obtained
conv:	for gamma	SubType= 1 from 1.022 Me	4 BuildTab V to 100 Te	le= 1 V. 18 bins	per decade	spline: 21(cos(A_))
	===== EM mod	dels for the G4	Region Def	aultReaion	ForTheWorld	4 7
uttenO	BetheHeit1	ler : Emin=	0 eV	Emax=	80 GeV	AngularGenUrban
	BetheHeitlerL	PM : Emin=	80 GeV	Emax=	100 TeV	AngularGenUrban
Rayl:	for gamma	a SubType= 1	1 BuildTab	le= 1 Z bing no	m = 1 (l' + r)	line. 0
	Lambda table	e trom 100 ev	to 100 keV, 100	7 Dins pe	r aecaae, sp	
		table from 100	Region Dof	aul+Pegion	ForTheWorld	
1.5	vermoreRaylei	ab · Emin-		Emax-		CullenGenerator
	ver mor enay lei			Emax-	100 101	cull tendener acor

Standard EM Physics Constructors

- Physics processes are assigned to particles in the physics list
- Particles to which EM physics processes can be assigned:
 - γ , e^{+/-}, $\mu^{+/-}$, $\pi^{+/-}$, p, $\Sigma^{+/-}$, Ξ^{-} , Ω^{-} , anti ($\Sigma^{+/-}$, Ξ^{-} , Ω^{-})
 - $\tau^{+/-}$, B^{+/-}, D^{+/-}, D_S^{+/-}, Λ_{c}^{+} , Σ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{+} , anti (Λ_{c}^{+} , Σ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{+})
 - d, t, ³He, α , generic ion, anti (d, t, ³He, α)
- Each particle type is a static object which has its own G4ProcessManager
 - manager maintains list of assigned processes
- Modular physics lists (G4VModularPhysicsList) allow building up a complete physics list from "physics modules"
 - physics module handles well-defined subset of physics (EM physics, decay physics, etc.)
 - G4VPhysicsConstructor is the interface class describing such subsets
- Several pre-defined EM physics constructors are available in Geant4

Standard EM Physics Constructors for HEP

- Description of Coulomb scattering is the same for three of these:
 - e^{+/-}: Urban-MSC model below 100 MeV and the Wentzel-WVI + single scattering model above 100 MeV
 - muons and hadrons: Wentzel-WVI + single scattering model
 - ions: Urban-MSC model
- But different MSC stepping algorithms or parameters are used to optimize either speed or accuracy

Constructor	Components	Comments
G4EmStandardPhysics	Default: nothing or _EM0 (QGSP_BERT, FTFP_BERT,)	for ATLAS and other HEP simulation applications
G4EmStandardPhysics_option1	Fast: due to simpler MSC step limitation , cuts used by photon processes (FTFP_BERT_ EMV)	similar to one used by CMS; good for crystals but not good for sampling calorimeters (i.e. with more detailed geometry)
G4EmStandardPhysics_option2	Experimental: similar to option1 with updated photoelectric model but no-displacement in MSC (FTFP_BERT_ EMX)	similar to one used by LHCb

Hybrid EM Physics Constructors

- Primary goal: best physics accuracy
- Combine standard and low energy EM models to do this
- More accurate e^{+/-} MSC models (Goudsmit-Saunderson) and/or more accurate stepping algorithms (compared to HEP)
- More stringent continuous step limitations due to ionization
- Recommended for more sensitive applications: medical, space

Constructor	Components	Comments
G4EmStandardPhysics_option3	Urban MSC model for all particles	proton/ion therapy
G4EmStandardPhysics_option4	most accurate combination of models (particle type and energy); GS MSC model with Mott correction and error-free stepping for e [±])	the ultimate goal is to have the most accurate EM physics description
G4EmLivermorePhysics	Livermore models for e ⁻ , γ below 1 GeV and standard above; same GS MSC for e [±] as in option4)	accurate Livermore based low energy e ⁻ and γ transport
G4EmPenelopePhysics	PENELOPE models for e^{\pm} , γ below 1 GeV and standard above; same GS MSC for e^{\pm} as in option4)	accurate PENELOPE based low energy e ⁻ , e ⁺ and γ transport

Experimental EM Physics Constructors

- Usually used only by developers for validation and model improvement
- Main difference is in description of Coulomb scattering (GS, WVI, SS)

Constructor	Components	Comments
G4EmStandardPhysicsGS	standard EM physics and the GS MSC model for e [±] with HEP settings	may be considered as an alternative to EM0 i.e. for HEP
G4EmStandardPhysicsWVI	WentzelWVI + Single Scattering mixed simulation model for Coulomb scattering	high and intermediate energy applications
G4EmStandardPhysicsSS	single scattering (SS) model description of the Coulomb scattering	validation and verification of the MSC and mixed simulation models
G4EmLowEPPhysics	Monarsh University Compton scattering model, 5D gamma conversion model, WVI-LE model	testing some low energy models
G4EmLivermorePolarized	polarized gamma models	a (polarized) extension of the Livermore physics models

Comments on EM Physics Constructors

- Physics lists may be built from scratch by any user
 - this was original recommendation from Geant4, but not now
- Recommend using one of the existing EM constructors
 - can use as a starting point
 - most users pick one and do not modify it
- Why so many EM constructors provided?
 - different application areas have different physics/computing requirements
 - each constructor is used and validated by several user groups
 -> code is tested and stable
 - all constructors maintained and tested by Geant4 developers

Extracting EM Physics-related Quantities

- You may want to know cross sections, energy loss, etc.
- Use the G4EmCalculator object
 - include the following lines in your application:

- make sure physics list is initialized first
- A good example of all the things you can do:
 - /examples/extended/electromagnetic/TestEm0
 - see especially RunAction::BeginOfRun() method

EM Special Topics

EM Models per Region

- Special models may be used in a particular G4Region, while all other parts of detector use general models
- Example: Geant4-DNA physics in a slice of volume (Region B) nested in World (Region A) which uses standard EM
- Use G4EmConfigurator to select special model, set energy limits within region
- UI commands allow optimization and easy configuration of models
- Can be used on top of any EM constructor:
 - /process/em/AddPAIRegion proton MYREGION pai
 - /process/em/AddMicroElecRegion MYREGION
 - /process/em/AddDNARegion MYREGION opt0

z (μm)

Atomic De-excitation

- Initiated by other physics interactions
 - e.g. photoelectric effect, ionization, radioactive decay
 - interactions leave target atom in excited state
- Evaluated Atomic Data Library (EADL) contains transition probabilities for:
 - radiative transitions (fluorescence photon emission)
 - Auger e- emission (initial and final vacancies are in different shells)
 - Coster-Kronig e- emission (initial and final vacancies are in same shell)
- Due to a common interface, Geant4 atomic de-excitation is compatible with both standard and low energy EM categories
 - can be enabled and controlled by UI commands (before initialization):
 - /process/em/fluo true
 - /process/em/auger true
 - /process/em/augerCascade true
 - /process/em/pixe true
 - /run/initialize
 - fluorescence transition is active by default in some EM constructors

Energy Loss Fluctuation

• For condensed history models:

- secondary photons (e-) with initial energy below the photon (e-) production threshold, are not generated in bremsstrahlung (ionization)
- Corresponding energy loss (that would have been taken away by these secondaries) is counted as continuous energy loss of primary particle along its step
- Mean value of energy loss along step (due to these sub-threshold secondaries) can be calculated using the restricted stopping power
- So we have the mean what about the distribution?
 - energy loss fluctuation models will tell us
- Urban and PAI models available in Geant4

Multiple Coulomb Scattering

- Elastic scattering of charged particles by the atomic potential
- Event-by-event modeling of elastic scattering is feasible only if mean number of interactions per track is less than a few hundred
- Detailed simulation therefore limited to electrons with low kinetic energies (< 100 keV) or thin targets
- Electrons with E_{kin} > 100 keV undergo a large number of elastic while slowing down in thick targets → condensed history approach
- MSC models simulate each particle by allowing individual steps which are much larger than average step length between two successive elastic scatterings → only summed effects are modeled

Geant4 Multiple Scattering Models

Model	Particle type	Energy limit	Specifics and applicability
Urban (L. Urban 2006)	Any	-	Default model (i.e. in EM-opt0) for electrons and positrons below 100 MeV, (Lewis 1950) approach, tuned to data, <u>used for LHC production</u> .
Screened Nuclear Recoil (Mendenhall and Weller 2005) TestEm5	p, ions	< 100 MeV/A	Theory based, providing simulation of nuclear recoil for sampling of radiation damage, focused on precise simulation of in case of space applications
Goudsmit-Saunderson	e⁺, e-	-	Theory based angular distributions (Goudsmit and Saunderson 1950). Mott correction and several stepping option including error-free (Kawrakov et al. 1998), precise electron transport
Coulomb scattering (2008)	Any	-	Theory based (Wentzel 1927) single scattering model, uses nuclear form-factors (Butkevich et al. 2002), focused on muons and hadrons
WentzelVI (2009) LowEnergyWentzelVI (2014)	Any	-	Mixed simulation model: MSC for small angles, Coulomb Scattering (Wentzel 1927) for large angles. Focused on simulation for muons and hadrons; low- energy model is applicable for low-energy e-
Ion Coulomb scattering (2010) Electron Coulomb scattering (2012)	lons e⁺, e⁻	-	Model based on Wentzel DCS + relativistic effects + screening effects for projectile & target.

Getting Help

- EM physics processes and models developed and maintained by the electromagnetic working groups of the Geant4 collaboration :
 - <u>https://geant4.web.cern.ch/collaboration/working_groups</u>

- Geant4 extended and advanced examples show how to use the available EM processes, models, functionality
- Visit the web-based verification and validation tools
 - https://geant-val.cern.ch

Summary

- EM processes and models are available to cover all "long-lived" charged particles and photons
- Energy range covered: few eV up to ~PeV
 - often more than one model required for this coverage
- EM physics constructors build the models, cross sections and processes
 - many pre-packaged constructors have been prepared and tested by Geant4 developers – pick one
 - but you can still build your own!
- It is possible to use different EM physics constructors in different regions of your geometry
- The correct multiple scattering model is crucial to simulations
 - several provided by Geant4
- Validation plots available!