
Version 10.5

Geometry II

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

• Various ways of placing volumes

– Simple placement volume

– Parameterized volume

– Replicated volume

– Divided volume

– Nested parameterization

– Reflected volume

– Assembly volume

• Touchable

Geometry II - M.Asai (SLAC) 2

Version 10.5

Physical volume

Detector geometry

• Three conceptual layers

– G4VSolid -- shape, size

– G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.

– G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 4

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Physical Volumes
• Placement volume : it is one positioned volume

– One physical volume object represents one “real” volume.
• Repeated volume : a volume placed many times

– One physical volume object represents any number of
“real” volumes.

– reduces use of memory.

– Parameterised
• repetition w.r.t. copy number

– Replica and Division
• simple repetition along one axis

• A mother volume can contain either
– many placement volumes
– or, one repeated volume

Geometry II - M.Asai (SLAC) 5

repeated

placement

Physical volume

• G4PVPlacement 1 Placement = One Placement Volume
– A volume instance positioned once in its mother volume

• G4PVParameterised 1 Parameterized = Many Repeated Volumes
– Parameterized by the copy number

• Shape, size, material, sensitivity, vis attributes, position and rotation can
be parameterized by the copy number.

• You have to implement a concrete class of G4VPVParameterisation.
– Reduction of memory consumption
– Currently: parameterization can be used only for volumes that either

a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

– By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

Geometry II - M.Asai (SLAC) 6

Physical volume

• G4PVReplica 1 Replica = Many Repeated Volumes
– Daughters of same shape are aligned along one axis
– Daughters fill the mother completely without gap in between.

• G4PVDivision 1 Division = Many Repeated Volumes
– Daughters of same shape are aligned along one axis and fill the mother.
– There can be gaps between mother wall and outmost daughters.
– No gap in between daughters.

• G4ReflectionFactory 1 Placement = a pair of Placement volumes
– generating placements of a volume and its reflected volume
– Useful typically for end-cap calorimeter

• G4AssemblyVolume 1 Placement = a set of Placement volumes
– Position a group of volumes

Geometry II - M.Asai (SLAC) 7

Version 10.5

Parameterized volume

G4PVParameterised

G4PVParameterised(const G4String& pName,

G4LogicalVolume* pLogical,

G4LogicalVolume* pMother,

const EAxis pAxis,

const G4int nReplicas,

G4VPVParameterisation* pParam

G4bool pSurfChk=false);

• Replicates the volume nReplicas times using the parameterization
pParam, within the mother volume pMother

• pAxis is a “suggestion” to the navigator along which Cartesian axis
replication of parameterized volumes dominates.

– kXAxis, kYAxis, kZAxis : one-dimensional optimization

– kUndefined : three-dimensional optimization
Geometry II - M.Asai (SLAC) 9

Parameterized Physical Volumes

• User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number
– where it is positioned (transformation, rotation)

• Optional:
– the size of the solid (dimensions)
– the type of the solid, material, sensitivity, vis attributes

• All daughters must be fully contained in the mother.
• Daughters should not overlap to each other.
• Limitations:

– Applies to simple CSG solids only
– Granddaughter volumes allowed only for special cases
– Consider parameterised volumes as “leaf” volumes

• Typical use-cases
– Complex detectors

• with large repetition of volumes, regular or irregular
– Medical applications

• the material in animal tissue is measured as cubes with varying
material Geometry II - M.Asai (SLAC) 10

4
0

1
2

3

5
6

G4PVParameterized : example

G4VSolid* solidChamber =

new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

new G4LogicalVolume

(solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4VPVParameterisation* chamberParam =

new ChamberParameterisation();

G4VPhysicalVolume* physChamber =

new G4PVParameterised("Chamber", logicChamber,

logicMother, kZAxis, NbOfChambers, chamberParam);

Geometry II - M.Asai (SLAC) 11

G4VPVParameterisation : example
class ChamberParameterisation : public G4VPVParameterisation

{

public:

ChamberParameterisation();

virtual ~ChamberParameterisation();

virtual void ComputeTransformation // position, rotation

(const G4int copyNo, G4VPhysicalVolume* physVol) const;

virtual void ComputeDimensions // size

(G4Box& trackerLayer, const G4int copyNo,

const G4VPhysicalVolume* physVol) const;

virtual G4VSolid* ComputeSolid // shape

(const G4int copyNo, G4VPhysicalVolume* physVol);

virtual G4Material* ComputeMaterial // material, sensitivity, visAtt

(const G4int copyNo, G4VPhysicalVolume* physVol,

const G4VTouchable *parentTouch=0);

// G4VTouchable should not be used for ordinary parameterization

};

Geometry II - M.Asai (SLAC) 12

G4VPVParameterisation : example
void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const
{
G4double Xposition = … // w.r.t. copyNo
G4ThreeVector origin(Xposition,Yposition,Zposition);
physVol->SetTranslation(origin);
physVol->SetRotation(0);

}

void ChamberParameterisation::ComputeDimensions
(G4Box& trackerChamber, const G4int copyNo,
const G4VPhysicalVolume* physVol) const
{
G4double XhalfLength = … // w.r.t. copyNo
trackerChamber.SetXHalfLength(XhalfLength);
trackerChamber.SetYHalfLength(YhalfLength);
trackerChamber.SetZHalfLength(ZHalfLength);

}

Geometry II - M.Asai (SLAC) 13

G4VPVParameterisation : example
G4VSolid* ChamberParameterisation::ComputeSolid

(const G4int copyNo, G4VPhysicalVolume* physVol)
{

G4VSolid* solid;
if(copyNo == …) solid = myBox;
else if(copyNo == …) solid = myTubs;
…
return solid;

}

G4Material* ComputeMaterial // material, sensitivity, visAtt
(const G4int copyNo, G4VPhysicalVolume* physVol,

const G4VTouchable *parentTouch=0);
{

G4Material* mat;
if(copyNo == …)
{

mat = material1;
physVol->GetLogicalVolume()->SetVisAttributes(att1);

}
…
return mat;

}

Geometry II - M.Asai (SLAC) 14

Version 10.5

Replicated volume

Replicated Volumes

• The mother volume is completely filled with replicas, all of
which are the same size (width) and shape.

• Replication may occur along:

– Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

• Coordinate system at the center of each replica

– Radial axis (Rho) – cons/tubs sections centered on the
origin and un-rotated

• Coordinate system same as the mother

– Phi axis (Phi) – phi sections or wedges, of cons/tubs
form

• Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

Geometry II - M.Asai (SLAC) 16

a daughter
logical volume to
be replicated

mother volume

G4PVReplica
G4PVReplica(const G4String &pName,

G4LogicalVolume *pLogical,

G4LogicalVolume *pMother,

const EAxis pAxis,

const G4int nReplicas,

const G4double width,

const G4double offset=0.);

• offset may be used only for tube/cone segment
• Features and restrictions:

– Replicas can be placed inside other replicas
– Normal placement volumes can be placed inside replicas, assuming no

intersection/overlaps with the mother volume or with other replicas
– No volume can be placed inside a radial replication
– Parameterised volumes cannot be placed inside a replica

Geometry II - M.Asai (SLAC) 17

Replica - axis, width, offset

• Cartesian axes - kXaxis, kYaxis, kZaxis

– Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

– Offset shall not be used

• Radial axis - kRaxis

– Center of n-th daughter is given as

width*(n+0.5)+offset

– Offset must be the inner radius
of the mother

• Phi axis - kPhi

– Center of n-th daughter is given as

width*(n+0.5)+offset

– Offset must be the starting angle of the mother
Geometry II - M.Asai (SLAC) 18

offset

width

offset

width

width

G4PVReplica : example
G4double tube_dPhi = 2.* M_PI * rad;

G4VSolid* tube =

new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube_dPhi);

G4LogicalVolume * tube_log =

new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =

new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.),

"tubeP", tube_log, world_phys, false, 0);

G4double divided_tube_dPhi = tube_dPhi/6.;

G4VSolid* div_tube =

new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm,

-divided_tube_dPhi/2., divided_tube_dPhi);

G4LogicalVolume* div_tube_log =

new G4LogicalVolume(div_tube,Pb,"div_tubeL",0,0,0);

G4VPhysicalVolume* div_tube_phys =

new G4PVReplica("div_tube_phys", div_tube_log,

tube_log, kPhi, 6, divided_tube_dPhi);
Geometry II - M.Asai (SLAC) 19

Version 10.5

Divided volume

G4PVDivision

• G4PVDivision is a special kind of G4PVParameterised.

– G4VPVParameterisation is automatically generated
according to the parameters given in G4PVDivision.

• G4PVDivision is similar to G4PVReplica but

– It currently allows gaps in between mother and daughter
volumes

– We are extending G4PVDivision to allow gaps between
daughters, and also gaps on side walls. We plan to
release this extension in near future.

• Shape of all daughter volumes must be same shape as the
mother volume.

– G4VSolid (to be assigned to the daughter logical volume)
must be the same type, but different object.

• Replication must be aligned along one axis.

• If your geometry does not have gaps, use G4Replica.

– For identical geometry, navigation of G4Replica is faster.

Geometry II - M.Asai (SLAC) 21

mother volume

G4PVDivision - 1

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions, // number of division is given
const G4double offset);

• The size (width) of the daughter volume is calculated as
((size of mother) - offset) / nDivisions

Geometry II - M.Asai (SLAC) 22

nDivisions
offset

G4PVDivision - 2

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4double width, // width of daughter volume is given
const G4double offset);

• The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)

– As many daughters as width and offset allow

Geometry II - M.Asai (SLAC) 23

offset width

G4PVDivision - 3

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double width, // both number of division and width are given
const G4double offset);

• nDivisions daughters of width thickness

Geometry II - M.Asai (SLAC) 24

nDivisions

widthoffset

G4PVDivision
• G4PVDivision currently supports following shapes / axes.

– G4Box : kXAxis, kYAxis, kZAxis
– G4Tubs : kRho, kPhi, kZAxis
– G4Cons : kRho, kPhi, kZAxis
– G4Trd : kXAxis, kYAxis, kZAxis
– G4Para : kXAxis, kYAxis, kZAxis
– G4Polycone : kRho, kPhi, kZAxis

• kZAxis - the number of divisions has to be the same as solid sections,
(i.e. numZPlanes-1), the width will not be taken into account.

– G4Polyhedra : kRho, kPhi, kZAxis
• kPhi - the number of divisions has to be the same as solid sides, (i.e.

numSides), the width will not be taken into account.
• kZAxis - the number of divisions has to be the same as solid sections,

(i.e. numZPlanes-1), the width will not be taken into account.
• In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if

width is provided, it is taken as the width at the -Z radius; the width at other radii
will be scaled to this one.

Geometry II - M.Asai (SLAC) 25

G4ReplicatedSlice

• New extension of G4Division introduced with version 9.4.
• It allows gaps in between divided volumes.

G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double half_gap, const G4double offset);

G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half_gap, const G4double offset);

G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,
const G4double half_gap, const G4double offset);

Geometry II - M.Asai (SLAC) 26

nDivisions
offset
half_gap

Version 10.5

Nested parameterization

4 Suppose your geometry has three-dimensional regular reputation of same shape
and size of volumes without gap between volumes. And material of such
volumes are changing according to the position.
4 E.g. voxels made by CT Scan data (DICOM)

4 Instead of direct three-dimensional parameterized volume,
use replicas for the first and second axes sequentially, and then use one-

dimensional parameterization along the third axis.

4 It requires much less memory for geometry optimization and gives much faster
navigation for ultra-large number of voxels.

Nested parameterization

Geometry II - M.Asai (SLAC) 28

Nested parameterization

Geometry II - M.Asai (SLAC) 29

0

1

2

0
1

20 1 2 3

4 Given geometry is defined as two sequential
replicas and then one-dimensional
parameterization,
4 Material of a voxel must be

parameterized not only by the copy
number of the voxel, but also by the
copy numbers of ancestors.

4 Material is indexed by three indices.
4 G4VNestedParameterisation is a special parameterization class derived from

G4VPVParameterisation base class.
4 ComputeMaterial() method of G4VNestedParameterisation has a touchable

object of the parent physical volume, in addition to the copy number of
the voxel.

4 Index of first axis = theTouchable->GetCopyNumber(1);
4 Index of second axis = theTouchable->GetCopyNumber(0);
4 Index of third axis = copy number

G4VNestedParameterisation
• G4VNestedParameterisation is derived from G4VPVParameterization.
• G4VNestedParameterisation class has three pure virtual methods you

have to implement,
– in addition to ComputeTransformation() method, which is mandatory

for all G4VPVParameterization classes.

virtual G4Material* ComputeMaterial(G4VPhysicalVolume *currentVol,
const G4int repNo, const G4VTouchable *parentTouch=0)=0;

• Return a material pointer w.r.t. copy numbers of itself and ancestors.
• Must cope with parentTouch=0 for navigator's sake. Typically, return a

default material if parentTouch=0.

virtual G4int GetNumberOfMaterials() const=0;
• Return total number of materials which may appear as the return value

of ComputeMaterial() method.

virtual G4Material* GetMaterial(G4int idx) const=0;
• Return idx-th material.
• “idx” is not a copy number. idx = [0, nMaterial-1]

Geometry II - M.Asai (SLAC) 30

G4VNestedParameterisation

• G4VNestedParameterisation is a kind of G4VPVParameterization.
– It can be used as an argument of G4PVParameterised.
– All other arguments of G4PVParameterised are unaffected.

• Nested parameterization of placement volume is not supported.
– All levels used as indices of material must be repeated volume.

There cannot be a level of placement volume in between.

Geometry II - M.Asai (SLAC) 31

Version 10.5

Assembly volume

Grouping volumes
• To represent a regular pattern of positioned volumes, composing a more or

less complex structure
– structures which are hard to describe with simple replicas or

parameterised volumes
– structures which may consist of different shapes
– Too densely positioned to utilize a mother volume

• Assembly volume
– acts as an envelope for its daughter volumes
– its role is over once its logical volume has been placed
– daughter physical volumes become independent copies in the final

structure
• Participating daughter logical volumes are treated as triplets

– logical volume
– translation w.r.t. envelop
– rotation w.r.t. envelop

Geometry II - M.Asai (SLAC) 33

G4AssemblyVolume
G4AssemblyVolume::AddPlacedVolume

(G4LogicalVolume* volume,

G4ThreeVector& translation,

G4RotationMatrix* rotation);

• Helper class to combine daughter logical volumes in arbitrary way

– Imprints of the assembly volume are made inside a mother logical
volume through G4AssemblyVolume::MakeImprint(…)

– Each physical volume name is generated automatically
• Format: av_WWW_impr_XXX_YYY_ZZZ

– WWW – assembly volume instance number

– XXX – assembly volume imprint number
– YYY – name of the placed logical volume in the assembly
– ZZZ – index of the associated logical volume

– Generated physical volumes (and related transformations) are
automatically managed (creation and destruction)

Geometry II - M.Asai (SLAC) 34

G4AssemblyVolume : example
G4AssemblyVolume* assembly = new G4AssemblyVolume();
G4RotationMatrix Ra;
G4ThreeVector Ta;
Ta.setX(…); Ta.setY(…); Ta.setZ(…);
assembly->AddPlacedVolume(plateLV, Ta, Ra);
… // repeat placement for each daughter

for(unsigned int i = 0; i < layers; i++) {
G4RotationMatrix Rm(…);
G4ThreeVector Tm(…);
assembly->MakeImprint(worldLV, Tm, Rm);

}

Geometry II - M.Asai (SLAC) 35

Version 10.5

Reflected volume

Reflecting solids

• G4ReflectedSolid (derived from G4VSolid)
– Utility class representing a solid shifted from its original reference frame to a

new mirror symmetric one
– The reflection (G4Reflect[X/Y/Z]3D) is applied as a decomposition into

rotation and translation
• G4ReflectionFactory

– Singleton object using G4ReflectedSolid for generating placements of
reflected volumes

• Reflections are currently limited to simple CSG solids.
– will be extended soon to all solids

Geometry II - M.Asai (SLAC) 37

4 Let's take an example of a pair of
mirror symmetric volumes.

4 Such geometry cannot be made by
parallel transformation
or 180 degree rotation.

Reflecting hierarchies of volumes - 1
G4PhysicalVolumesPair G4ReflectionFactory::Place
(const G4Transform3D& transform3D, // the transformation
const G4String& name, // the name
G4LogicalVolume* LV, // the logical volume
G4LogicalVolume* motherLV, // the mother volume
G4bool noBool, // currently unused
G4int copyNo) // optional copy number

• Used for normal placements:
i. Performs the transformation decomposition
ii. Generates a new reflected solid and logical volume

Ø Retrieves it from a map if the reflected object is already created
iii. Transforms any daughter and places them in the given mother
iv. Returns a pair of physical volumes, the second being a placement in the

reflected mother
• G4PhysicalVolumesPair is

std::map<G4VPhysicalVolume*,G4VPhysicalVolume*>

Geometry II - M.Asai (SLAC) 38

Reflecting hierarchies of volumes - 2
G4PhysicalVolumesPair G4ReflectionFactory::Replicate

(const G4String& name, // the actual name

G4LogicalVolume* LV, // the logical volume

G4LogicalVolume* motherLV, // the mother volume

Eaxis axis // axis of replication

G4int replicaNo // number of replicas

G4int width, // width of single replica

G4int offset=0) // optional mother offset

– Creates replicas in the given mother volume

– Returns a pair of physical volumes, the second being a replica in the reflected
mother

Geometry II - M.Asai (SLAC) 39

Version 10.5

Touchable

Step point and touchable

• As mentioned already, G4Step has two G4StepPoint objects as its starting and
ending points. All the geometrical information of the particular step should be
taken from “PreStepPoint”.
– Geometrical information associated with G4Track is identical to
“PostStepPoint”.

• Each G4StepPoint object has
– Position in world coordinate system
– Global and local time
– Material
– G4TouchableHistory for geometrical information

• G4TouchableHistory object is a vector of information for each geometrical
hierarchy.
– copy number
– transformation / rotation to its mother

• Since release 4.0, handles (or smart-pointers) to touchables are intrinsically used.
Touchables are reference counted.

Geometry II - M.Asai (SLAC) 41

Copy number

• Suppose a calorimeter is made of
4x5 cells.

– and it is implemented by two
levels of replica.

• In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

• To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Geometry II - M.Asai (SLAC) 42

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4 Remember geometrical information in G4Track is identical to
"PostStepPoint".

4 You cannot get the correct copy number for "PreStepPoint" if you directly
access to the physical volume.

4 Use touchable to get the proper copy number, transform matrix, etc.

Touchable
• G4TouchableHistory has information of geometrical hierarchy of the point.

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

(G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo

= theTouchable->GetVolume(1)->GetCopyNo();

G4int grandMotherCopyNo

= theTouchable->GetVolume(2)->GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

->GetTopTransform().TransformPoint(worldPos);

Geometry II - M.Asai (SLAC) 43

